Suppr超能文献

利用粗糙集属性约简和区块链构建健全的公共卫生应急决策与管理体系。

Public health emergency decision-making and management system sound research using rough set attribute reduction and blockchain.

机构信息

School of Economics and Management, Kunming University, Kunming, 650214, China.

出版信息

Sci Rep. 2022 Mar 4;12(1):3600. doi: 10.1038/s41598-022-07493-w.

Abstract

Public health emergency decisions are explored to ensure the emergency response measures in an environment where various emergencies occur frequently. An emergency decision is essentially a multi-criteria risk decision-making problem. The feasibility of applying prospect theory to emergency decisions is analyzed, and how psychological behaviors of decision-makers impact decision-making results are quantified. On this basis, the cognitive process of public health emergencies is investigated based on the rough set theory. A Decision Rule Extraction Algorithm (denoted as A-DRE) that considers attribute costs is proposed, which is then applied for attribute reduction and rule extraction on emergency datasets. In this way, decision-makers can obtain reduced decision table attributes quickly. Considering that emergency decisions require the participation of multiple departments, a framework is constructed to solve multi-department emergency decisions. The technical characteristics of the blockchain are in line with the requirements of decentralization and multi-party participation in emergency management. The core framework of the public health emergency management system-plan, legal system, mechanism, and system can play an important role. When [Formula: see text], the classification accuracy under the K-Nearest Neighbor (KNN) classifier reaches 73.5%. When [Formula: see text], the classification accuracy under the Support Vector Machines (SVM) classifier reaches 86.4%. It can effectively improve China's public health emergency management system and improve the efficiency of emergency management. By taking Coronavirus Disease 2019 (COVID-19) as an example, the weight and prospect value functions of different decision-maker attributes are constructed based on prospect theory. The optimal rescue plan is finally determined. A-DRE can consider the cost of each attribute in the decision table and the ability to classify it correctly; moreover, it can reduce the attributes and extract the rules on the COVID-19 dataset, suitable for decision-makers' situation face once an emergency occurs. The emergency decision approach based on rough set attribute reduction and prospect theory can acquire practical decision-making rules while considering the different risk preferences of decision-makers facing different decision-making results, which is significant for the rapid development of public health emergency assistance and disaster relief.

摘要

公共卫生应急决策旨在确保在各种突发事件频繁发生的环境中采取应急响应措施。应急决策本质上是一个多准则风险决策问题。分析了将前景理论应用于应急决策的可行性,并量化了决策者心理行为对决策结果的影响。在此基础上,基于粗糙集理论研究了公共卫生突发事件的认知过程。提出了一种考虑属性代价的决策规则提取算法(记为 A-DRE),并将其应用于应急数据集的属性约简和规则提取。这样,决策者可以快速获得简化的决策表属性。考虑到应急决策需要多个部门的参与,构建了一个用于解决多部门应急决策的框架。区块链的技术特点符合应急管理去中心化和多方参与的要求。公共卫生应急管理系统的核心框架——计划、法制、机制和系统,可以发挥重要作用。当[公式:见文本]时,K-近邻(KNN)分类器的分类准确率达到 73.5%。当[公式:见文本]时,支持向量机(SVM)分类器的分类准确率达到 86.4%。它可以有效地提高中国的公共卫生应急管理体系,提高应急管理效率。以 2019 年冠状病毒病(COVID-19)为例,基于前景理论构建了不同决策者属性的权重和前景值函数,最终确定了最优救援方案。A-DRE 可以考虑决策表中每个属性的成本及其正确分类的能力;此外,它可以减少 COVID-19 数据集的属性并提取规则,适用于决策者在发生紧急情况时的情况。基于粗糙集属性约简和前景理论的应急决策方法可以在考虑决策者面临不同决策结果时的不同风险偏好的同时,获取实用的决策规则,这对于公共卫生应急救援的快速发展具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de1/8897403/4408dbb00895/41598_2022_7493_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验