MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
Neuroimage. 2022 May 15;252:119054. doi: 10.1016/j.neuroimage.2022.119054. Epub 2022 Mar 3.
Early detection of Alzheimer's disease (AD) is essential for developing effective treatments. Neuroimaging techniques like Magnetic Resonance Imaging (MRI) have the potential to detect brain changes before symptoms emerge. Structural MRI can detect atrophy related to AD, but it is possible that functional changes are observed even earlier. We therefore examined the potential of Magnetoencephalography (MEG) to detect differences in functional brain activity in people with Mild Cognitive Impairment (MCI) - a state at risk of early AD. We introduce a framework for multimodal combination to ask whether MEG data from a resting-state provides complementary information beyond structural MRI data in the classification of MCI versus controls. More specifically, we used multi-kernel learning of support vector machines to classify 163 MCI cases versus 144 healthy elderly controls from the BioFIND dataset. When using the covariance of planar gradiometer data in the low Gamma range (30-48 Hz), we found that adding a MEG kernel improved classification accuracy above kernels that captured several potential confounds (e.g., age, education, time-of-day, head motion). However, accuracy using MEG alone (68%) was worse than MRI alone (71%). When simply concatenating (normalized) features from MEG and MRI into one kernel (Early combination), there was no advantage of combining MEG with MRI versus MRI alone. When combining kernels of modality-specific features (Intermediate combination), there was an improvement in multimodal classification to 74%. The biggest multimodal improvement however occurred when we combined kernels from the predictions of modality-specific classifiers (Late combination), which achieved 77% accuracy (a reliable improvement in terms of permutation testing). We also explored other MEG features, such as the variance versus covariance of magnetometer versus planar gradiometer data within each of 6 frequency bands (delta, theta, alpha, beta, low gamma, or high gamma), and found that they generally provided complementary information for classification above MRI. We conclude that MEG can improve on the MRI-based classification of MCI.
阿尔茨海默病(AD)的早期检测对于开发有效的治疗方法至关重要。神经影像学技术,如磁共振成像(MRI),有可能在症状出现之前检测到大脑变化。结构 MRI 可以检测与 AD 相关的萎缩,但也有可能更早地观察到功能变化。因此,我们研究了脑磁图(MEG)检测轻度认知障碍(MCI)患者大脑功能活动差异的潜力——MCI 是 AD 早期发病的高危状态。我们引入了一种多模态组合框架,以探讨静息状态下的 MEG 数据在 MCI 与对照组的分类中是否提供了结构 MRI 数据之外的补充信息。更具体地说,我们使用支持向量机的多核学习对来自 BioFIND 数据集的 163 例 MCI 病例和 144 例健康老年人对照进行分类。当使用平面梯度计数据的低伽马频段(30-48 Hz)的协方差时,我们发现添加 MEG 核可以提高分类精度,优于捕获多个潜在混杂因素(例如年龄、教育、时间、头部运动)的核。然而,仅使用 MEG 的准确率(68%)不如仅使用 MRI 的准确率(71%)。当仅将 MEG 和 MRI 的(归一化)特征简单地串联到一个核中(早期组合)时,与 MRI 相比,组合 MEG 与 MRI 没有优势。当组合模态特定特征的核(中间组合)时,多模态分类会提高到 74%。然而,当我们结合模态特定分类器的预测核(晚期组合)时,多模态分类会有最大的改进,达到 77%的准确率(在置换检验方面是可靠的改进)。我们还探索了其他 MEG 特征,例如在每个 6 个频带(δ、θ、α、β、低γ或高γ)中,磁强计与平面梯度计数据的协方差与方差,发现它们通常为分类提供了比 MRI 更丰富的信息。我们得出结论,MEG 可以提高基于 MRI 的 MCI 分类。