Suppr超能文献

通过融合结构磁共振成像(sMRI)和静息态脑磁图(rsMEG)数据提高早期阿尔茨海默病分类准确率:一种深度学习方法

Enhancing early Alzheimer's disease classification accuracy through the fusion of sMRI and rsMEG data: a deep learning approach.

作者信息

Liu Yuchen, Wang Ling, Ning Xiaolin, Gao Yang, Wang Defeng

机构信息

School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China.

Institute of Large-Scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Beijing, China.

出版信息

Front Neurosci. 2024 Nov 20;18:1480871. doi: 10.3389/fnins.2024.1480871. eCollection 2024.

Abstract

OBJECTIVE

Early detection and prediction of Alzheimer's Disease are paramount for elucidating neurodegenerative processes and enhancing cognitive resilience. Structural Magnetic Resonance Imaging (sMRI) provides insights into brain morphology, while resting-state Magnetoencephalography (rsMEG) elucidates functional aspects. However, inherent disparities between these multimodal neuroimaging modalities pose challenges to the effective integration of multimodal features.

APPROACH

To address these challenges, we propose a deep learning-based multimodal classification framework for Alzheimer's disease, which harnesses the fusion of pivotal features from sMRI and rsMEG to augment classification precision. Utilizing the BioFIND dataset, classification trials were conducted on 163 Mild Cognitive Impairment cases and 144 cognitively Healthy Controls.

RESULTS

The study findings demonstrate that the InterFusion method, combining sMRI and rsMEG data, achieved a classification accuracy of 0.827. This accuracy significantly surpassed the accuracies obtained by rsMEG only at 0.710 and sMRI only at 0.749. Moreover, the evaluation of different fusion techniques revealed that InterFusion outperformed both EarlyFusion with an accuracy of 0.756 and LateFusion with an accuracy of 0.801. Additionally, the study delved deeper into the role of different frequency band features of rsMEG in fusion by analyzing six frequency bands, thus expanding the diagnostic scope.

DISCUSSION

These results highlight the value of integrating resting-state rsMEG and sMRI data in the early diagnosis of Alzheimer's disease, demonstrating significant potential in the field of neuroscience diagnostics.

摘要

目的

阿尔茨海默病的早期检测和预测对于阐明神经退行性过程和增强认知恢复力至关重要。结构磁共振成像(sMRI)可洞察脑形态,而静息态脑磁图(rsMEG)则能阐明功能方面。然而,这些多模态神经成像模态之间的固有差异给多模态特征的有效整合带来了挑战。

方法

为应对这些挑战,我们提出了一种基于深度学习的阿尔茨海默病多模态分类框架,该框架利用sMRI和rsMEG的关键特征融合来提高分类精度。利用BioFIND数据集,对163例轻度认知障碍病例和144例认知健康对照进行了分类试验。

结果

研究结果表明,结合sMRI和rsMEG数据的InterFusion方法实现了0.827的分类准确率。这一准确率显著超过了仅使用rsMEG时的0.710和仅使用sMRI时的0.749。此外,对不同融合技术的评估显示,InterFusion的表现优于准确率为0.756的早期融合和准确率为0.801的晚期融合。此外,该研究通过分析六个频段,更深入地探讨了rsMEG不同频段特征在融合中的作用,从而扩大了诊断范围。

讨论

这些结果凸显了在阿尔茨海默病早期诊断中整合静息态rsMEG和sMRI数据的价值,在神经科学诊断领域显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f11/11615070/98dbf0c5f6e3/fnins-18-1480871-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验