Department of Neurology, Feinberg School of Medicine, Northwestern University, United States.
Department of Medicine, Feinberg School of Medicine, Northwestern University, United States.
Mol Metab. 2022 Jun;60:101468. doi: 10.1016/j.molmet.2022.101468. Epub 2022 Mar 3.
Normal cellular function requires a rate of ATP production sufficient to meet demand. In most neurodegenerative diseases (including Amyotrophic Lateral Sclerosis [ALS]), mitochondrial dysfunction is postulated raising the possibility of impaired ATP production and a need for compensatory maneuvers to sustain the ATP production/demand balance. We investigated intermediary metabolism of neurons expressing familial ALS (fALS) genes and interrogated the functional consequences of glycolysis genes in fitness assays and neuronal survival.
We created a pure neuronal model system for isotopologue investigations of fuel utilization. In a yeast platform we studied the functional contributions of glycolysis genes in a growth fitness assay iafter expressing of a fALS gene.
We find in our rodent models of fALS, a reduction in neuronal lactate production with maintained or enhanced activity of the neuronal citric acid cycle. This rewiring of metabolism is associated with normal ATP levels, bioenergetics, and redox status, thus supporting the notion that gross mitochondrial function is not compromised in neurons soon after expressing fALS genes. Genetic loss-of-function manipulation of individual steps in the glycolysis and the pentose phosphate pathway blunt the negative phenotypes seen in various fALS models.
We propose that neurons adjust fuel utilization in the setting of neurodegenerative disease-associated alteration in mitochondrial function in a baleful manner and targeting this process can be healthful.
正常细胞功能需要产生足够满足需求的 ATP 速率。在大多数神经退行性疾病(包括肌萎缩侧索硬化症 [ALS])中,假设线粒体功能障碍会导致 ATP 产生受损,需要采取代偿措施来维持 ATP 产生/需求平衡。我们研究了表达家族性 ALS (fALS) 基因的神经元的中间代谢,并在适应性测定和神经元存活中探讨了糖酵解基因的功能后果。
我们创建了一个纯神经元模型系统,用于对燃料利用进行同位素标记研究。在酵母平台上,我们研究了在表达 fALS 基因后,糖酵解基因在生长适应性测定中的功能贡献。
我们在 fALS 的啮齿动物模型中发现,神经元乳酸生成减少,而神经元柠檬酸循环的活性保持或增强。这种代谢重排与正常的 ATP 水平、生物能量和氧化还原状态相关,从而支持这样的观点,即在表达 fALS 基因后不久,神经元的总体线粒体功能并未受损。糖酵解和戊糖磷酸途径中单个步骤的遗传功能丧失操作削弱了各种 fALS 模型中观察到的负面表型。
我们提出,在与线粒体功能相关的神经退行性疾病改变的情况下,神经元以有害的方式调整燃料利用,靶向该过程可能是有益的。