Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia.
Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
J Cachexia Sarcopenia Muscle. 2022 Jun;13(3):1541-1553. doi: 10.1002/jcsm.12950. Epub 2022 Mar 6.
Oxidative stress is implicated in the pathophysiology of Duchenne muscular dystrophy (DMD, caused by mutations in the dystrophin gene), which is the most common and severe of the muscular dystrophies. To our knowledge, the distribution of iron, an important modulator of oxidative stress, has not been assessed in DMD. We tested the hypotheses that iron accumulation occurs in mouse models of DMD and that modulation of iron through the diet or chelation could modify disease severity.
We assessed iron distribution and total elemental iron using LA-ICP-MS on skeletal muscle cross-sections of 8-week-old Bl10 control mice and dystrophic mdx mice (with moderate dystrophy) and dystrophin/utrophin-null mice (dko, with severe dystrophy). In addition, mdx mice (4 weeks) were treated with either an iron chelator (deferiprone 150 mg/kg/day) or iron-enriched feed (containing 1% added iron as carbonyl iron). Immunoblotting was used to determine the abundance of iron- and mitochondria-related proteins. (Immuno)histochemical and mRNA assessments of fibrosis and inflammation were also performed.
We observed a significant increase in total elemental iron in hindlimb muscles of dko mice (+50%, P < 0.05) and in the diaphragm of mdx mice (+80%, P < 0.05), with both tissues exhibiting severe pathology. Iron dyshomeostasis was further evidenced by an increase in the storage protein ferritin (dko: +39%, P < 0.05) and ferroportin compared with Bl10 control mice (mdx: +152% and dko: +175%, P < 0.05). Despite having features of iron overload, dystrophic muscles had lower protein expression of ALAS-1, the rate-limiting enzyme for haem synthesis (dko -44%, P < 0.05), and the haem-containing protein myoglobin (dko -54%, P < 0.05). Deferiprone treatment tended to decrease muscle iron levels in mdx mice (-30%, P < 0.1), which was associated with lower oxidative stress and fibrosis, but suppressed haem-containing proteins and mitochondrial content. Increasing iron via dietary intervention elevated total muscle iron (+25%, P < 0.05) but did not aggravate the pathology.
Muscles from dystrophic mice have increased iron levels and dysregulated iron-related proteins that are associated with dystrophic pathology. Muscle iron levels were manipulated by iron chelation and iron enriched feed. Iron chelation reduced fibrosis and reactive oxygen species (ROS) but also suppressed haem-containing proteins and mitochondrial activity. Conversely, iron supplementation increased ferritin and haem-containing proteins but did not alter ROS, fibrosis, or mitochondrial activity. Further studies are required to investigate the contribution of impaired ferritin breakdown in the dysregulation of iron homeostasis in DMD.
氧化应激与杜氏肌营养不良症(DMD,由肌营养不良蛋白基因突变引起)的病理生理学有关,DMD 是最常见和最严重的肌肉营养不良症之一。据我们所知,铁(一种重要的氧化应激调节剂)的分布尚未在 DMD 中进行评估。我们检验了以下假设:铁在 DMD 的小鼠模型中积累,并且通过饮食或螯合作用调节铁可以改变疾病的严重程度。
我们使用激光剥蚀-电感耦合等离子体质谱法(LA-ICP-MS)评估了 8 周大的 Bl10 对照小鼠和营养不良型 mdx 小鼠(有中度营养不良)以及肌营养不良蛋白/乌头蛋白双基因敲除型(dko,有严重营养不良)的骨骼肌横切片中的铁分布和总元素铁。此外,mdx 小鼠(4 周)接受铁螯合剂(地拉罗司 150mg/kg/天)或富含铁的饲料(含有 1%羰基铁作为添加铁)治疗。使用免疫印迹法确定铁和线粒体相关蛋白的丰度。还进行了(免疫)组织化学和纤维化和炎症的 mRNA 评估。
我们观察到 dko 小鼠的后肢肌肉(增加 50%,P<0.05)和 mdx 小鼠的膈肌(增加 80%,P<0.05)的总元素铁显著增加,这两种组织都表现出严重的病理学特征。铁动态平衡紊乱的进一步证据是铁储存蛋白 ferritin(dko:增加 39%,P<0.05)和 ferroportin 与 Bl10 对照小鼠相比增加(mdx:增加 152%和 dko:增加 175%,P<0.05)。尽管有铁过载的特征,但营养不良的肌肉中,血红素合成限速酶 ALAS-1 的蛋白表达减少(dko:减少 44%,P<0.05),血红素结合蛋白肌红蛋白(dko:减少 54%,P<0.05)。地拉罗司治疗 mdx 小鼠的肌肉铁水平有下降趋势(减少 30%,P<0.1),这与较低的氧化应激和纤维化有关,但抑制了血红素结合蛋白和线粒体含量。通过饮食干预增加铁会增加总肌肉铁(增加 25%,P<0.05),但不会加重病理。
营养不良的小鼠肌肉中的铁水平升高,铁相关蛋白失调,与营养不良的病理有关。肌肉铁水平通过铁螯合和富含铁的饲料进行调节。铁螯合作用减少了纤维化和活性氧(ROS),但也抑制了血红素结合蛋白和线粒体活性。相反,铁补充增加了铁蛋白和血红素结合蛋白,但没有改变 ROS、纤维化或线粒体活性。需要进一步研究来研究铁稳态失调中铁蛋白分解受损对 DMD 的影响。