Suppr超能文献

在新冠疫情期间的在线调查中,样本是否应加权以减少选择偏差?来自七个数据集的数据。

Should samples be weighted to decrease selection bias in online surveys during the COVID-19 pandemic? Data from seven datasets.

作者信息

Haddad Chadia, Sacre Hala, Zeenny Rony M, Hajj Aline, Akel Marwan, Iskandar Katia, Salameh Pascale

机构信息

INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon.

Research Department, Psychiatric Hospital of the Cross, P.O. Box 60096, Jal Eddib, Lebanon.

出版信息

BMC Med Res Methodol. 2022 Mar 6;22(1):63. doi: 10.1186/s12874-022-01547-3.

Abstract

BACKGROUND

Online surveys have triggered a heated debate regarding their scientific validity. Many authors have adopted weighting methods to enhance the quality of online survey findings, while others did not find an advantage for this method. This work aims to compare weighted and unweighted association measures after adjustment over potential confounding, taking into account dataset properties such as the initial gap between the population and the selected sample, the sample size, and the variable types.

METHODS

This study assessed seven datasets collected between 2019 and 2021 during the COVID-19 pandemic through online cross-sectional surveys using the snowball sampling technique. Weighting methods were applied to adjust the online sample over sociodemographic features of the target population.

RESULTS

Despite varying age and gender gaps between weighted and unweighted samples, strong similarities were found for dependent and independent variables. When applied on the same datasets, the regression analysis results showed a high relative difference between methods for some variables, while a low difference was found for others. In terms of absolute impact, the highest impact on the association measure was related to the sample size, followed by the age gap, the gender gap, and finally, the significance of the association between weighted age and the dependent variable.

CONCLUSION

The results of this analysis of online surveys indicate that weighting methods should be used cautiously, as weighting did not affect the results in some databases, while it did in others. Further research is necessary to define situations in which weighting would be beneficial.

摘要

背景

在线调查引发了关于其科学有效性的激烈辩论。许多作者采用加权方法来提高在线调查结果的质量,而另一些人则未发现这种方法有优势。这项工作旨在在对潜在混杂因素进行调整后,比较加权和未加权的关联度量,并考虑数据集的属性,如总体与所选样本之间的初始差距、样本大小和变量类型。

方法

本研究通过使用雪球抽样技术的在线横断面调查,评估了2019年至2021年新冠疫情期间收集的七个数据集。应用加权方法根据目标人群的社会人口特征对在线样本进行调整。

结果

尽管加权样本和未加权样本之间的年龄和性别差距有所不同,但在因变量和自变量方面发现了很强的相似性。当应用于相同的数据集时,回归分析结果显示,对于某些变量,不同方法之间存在较高的相对差异,而对于其他变量则差异较小。就绝对影响而言,对关联度量影响最大的是样本大小,其次是年龄差距、性别差距,最后是加权年龄与因变量之间关联的显著性。

结论

这项在线调查分析的结果表明,应谨慎使用加权方法,因为加权在某些数据库中未影响结果,而在其他数据库中则有影响。有必要进行进一步研究以确定加权有益的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d3b/8898496/8e410b87d822/12874_2022_1547_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验