Guharay Sabyasachi
Systems Engineering & Operations Research, George Mason University, Fairfax, VA, 22030, USA.
BMC Med Res Methodol. 2025 Jan 3;25(1):1. doi: 10.1186/s12874-024-02423-y.
In this work, we implement a data-driven approach using an aggregation of several analytical methods to study the characteristics of COVID-19 daily infection and death time series and identify correlations and characteristic trends that can be corroborated to the time evolution of this disease. The datasets cover twelve distinct countries across six continents, from January 22, 2020 till March 1, 2022. This time span is partitioned into three windows: (1) pre-vaccine, (2) post-vaccine and pre-omicron (BA.1 variant), and (3) post-vaccine including post-omicron variant. This study enables deriving insights into intriguing questions related to the science of system dynamics pertaining to COVID-19 evolution.
We implement a set of several distinct analytical methods for: (a) statistical studies to estimate the skewness and kurtosis of the data distributions; (b) analyzing the stationarity properties of these time series using the Augmented Dickey-Fuller (ADF) tests; (c) examining co-integration properties for the non-stationary time series using the Phillips-Ouliaris (PO) tests; (d) calculating the Hurst exponent using the rescaled-range (R/S) analysis, along with the Detrended Fluctuation Analysis (DFA), for self-affinity studies of the evolving dynamical datasets.
We notably observe a significant asymmetry of distributions shows from skewness and the presence of heavy tails is noted from kurtosis. The daily infection and death data are, by and large, nonstationary, while their corresponding log return values render stationarity. The self-affinity studies through the Hurst exponents and DFA exhibit intriguing local changes over time. These changes can be attributed to the underlying dynamics of state transitions, especially from a random state to either mean-reversion or long-range memory/persistence states.
We conduct systematic studies covering a widely diverse time series datasets of the daily infections and deaths during the evolution of the COVID-19 pandemic. We demonstrate the merit of a multiple analytics frameworks through systematically laying down a methodological structure for analyses and quantitatively examining the evolution of the daily COVID-19 infection and death cases. This methodology builds a capability for tracking dynamically evolving states pertaining to critical problems.
在本研究中,我们采用一种数据驱动的方法,综合多种分析方法来研究新冠疫情每日感染和死亡时间序列的特征,识别可与该疾病时间演变相印证的相关性和特征趋势。数据集涵盖六大洲的12个不同国家,时间跨度从2020年1月22日至2022年3月1日。该时间跨度被划分为三个窗口:(1)疫苗接种前,(2)疫苗接种后及奥密克戎(BA.1变体)出现前,以及(3)疫苗接种后,包括奥密克戎变体出现后。本研究有助于深入了解与新冠疫情演变相关的系统动力学科学中一些有趣的问题。
我们实施了一系列不同的分析方法用于:(a)统计研究,以估计数据分布的偏度和峰度;(b)使用增强迪基-富勒(ADF)检验分析这些时间序列的平稳性;(c)使用菲利普斯-奥利亚斯(PO)检验检查非平稳时间序列的协整性质;(d)使用重标极差(R/S)分析和去趋势波动分析(DFA)计算赫斯特指数,用于对不断演变的动态数据集进行自相似性研究。
我们显著观察到分布存在明显的不对称性,偏度显示出这一点,峰度则表明存在厚尾现象。每日感染和死亡数据总体上是非平稳的,而它们相应的对数收益率值呈现出平稳性。通过赫斯特指数和DFA进行的自相似性研究显示,随着时间推移存在有趣的局部变化。这些变化可归因于状态转换的潜在动态,特别是从随机状态到均值回归或长程记忆/持续性状态的转变。
我们对新冠疫情演变期间每日感染和死亡的广泛多样的时间序列数据集进行了系统研究。我们通过系统地构建分析方法结构并定量检查新冠疫情每日感染和死亡病例的演变过程,展示了多种分析框架的优点。这种方法建立了跟踪与关键问题相关的动态演变状态的能力。