Suppr超能文献

基于独立慢特征分析的非高斯和非线性过程故障检测

Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis.

作者信息

Li Chang, Zhou Zhe, Wen Chenglin, Li Zuxin

机构信息

School of Engineering, Huzhou University, Huzhou 313000, China.

School of Automation, Guangdong University of Petrochemical Technology, Maoming 525000, China.

出版信息

ACS Omega. 2022 Feb 16;7(8):6978-6990. doi: 10.1021/acsomega.1c06649. eCollection 2022 Mar 1.

Abstract

Independent component analysis (ICA) is an excellent latent variables (LVs) extraction method that can maximize the non-Gaussianity between LVs to extract statistically independent latent variables and which has been widely used in multivariate statistical process monitoring (MSPM). The underlying assumption of ICA is that the observation data are composed of linear combinations of LVs that are statistically independent. However, the assumption is invalid because the observation data are always derived from the nonlinear mixture of LVs due to the nonlinear characteristic in industrial processes. Under this circumstance, the ICA-based fault detection is unable to provide accurate detection for specific faults of industrial processes. Since the observation data come from the nonlinear mixing of LVs, this makes the observation data change faster than the intrinsic LVs on the time scale. The temporal slowness can be regarded as an additional criterion in the extraction of LVs. The slow feature analysis (SFA) derived from the temporal slowness has received extensive attention and application in MSPM in recent years. Simultaneously, the temporal slowness is expected to make up for the problem that the LVs extracted by ICA have difficulty accurately describing the characteristics of the process. To solve the above problems, this work proposes to monitor non-Gaussian and nonlinear processes using the independent slow feature analysis (ISFA) that combines statistical independence and temporal slowness in extracting the LVs. When the observation data are composed of a nonlinear mixture of LVs, the extracted LVs of ISFA can describe the characteristics of the processes better than ICA, thereby improving the accuracy of fault detection for the non-Gaussian and nonlinear processes. The superiority of the proposed method is verified by a numerical example design and the Tennessee-Eastman process.

摘要

独立成分分析(ICA)是一种出色的潜在变量提取方法,它可以最大化潜在变量之间的非高斯性,以提取统计独立的潜在变量,并且已广泛应用于多变量统计过程监控(MSPM)。ICA的基本假设是观测数据由统计独立的潜在变量的线性组合组成。然而,由于工业过程中的非线性特性,观测数据总是来自潜在变量的非线性混合,因此该假设是无效的。在这种情况下,基于ICA的故障检测无法对工业过程的特定故障提供准确检测。由于观测数据来自潜在变量的非线性混合,这使得观测数据在时间尺度上的变化比内在潜在变量更快。时间慢度可以被视为提取潜在变量时的一个附加标准。近年来,从时间慢度推导出来的慢特征分析(SFA)在MSPM中受到了广泛关注和应用。同时,时间慢度有望弥补ICA提取的潜在变量难以准确描述过程特征的问题。为了解决上述问题,本文提出使用独立慢特征分析(ISFA)来监控非高斯和非线性过程,该方法在提取潜在变量时结合了统计独立性和时间慢度。当观测数据由潜在变量的非线性混合组成时,ISFA提取的潜在变量比ICA能更好地描述过程特征,从而提高了对非高斯和非线性过程故障检测的准确性。通过数值示例设计和田纳西 - 伊斯曼过程验证了所提方法的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04e3/8892482/7dbd1ca1698d/ao1c06649_0001.jpg

相似文献

1
Fault Detection of Non-Gaussian and Nonlinear Processes Based on Independent Slow Feature Analysis.
ACS Omega. 2022 Feb 16;7(8):6978-6990. doi: 10.1021/acsomega.1c06649. eCollection 2022 Mar 1.
2
Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis.
IEEE Trans Neural Netw Learn Syst. 2017 Jan;28(1):122-135. doi: 10.1109/TNNLS.2015.2505086. Epub 2015 Dec 17.
3
Fault Detection and Isolation of Non-Gaussian and Nonlinear Processes Based on Statistics Pattern Analysis and the -Nearest Neighbor Method.
ACS Omega. 2022 May 26;7(22):18623-18637. doi: 10.1021/acsomega.2c01279. eCollection 2022 Jun 7.
4
Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):560-572. doi: 10.1109/TNNLS.2016.2635111. Epub 2016 Dec 22.
5
Model Fusion and Multiscale Feature Learning for Fault Diagnosis of Industrial Processes.
IEEE Trans Cybern. 2023 Oct;53(10):6465-6478. doi: 10.1109/TCYB.2022.3176475. Epub 2023 Sep 15.
6
Double-layer ensemble monitoring of non-gaussian processes using modified independent component analysis.
ISA Trans. 2017 May;68:181-188. doi: 10.1016/j.isatra.2017.02.003. Epub 2017 Feb 10.
8
Decentralized adaptively weighted stacked autoencoder-based incipient fault detection for nonlinear industrial processes.
ISA Trans. 2023 Aug;139:216-228. doi: 10.1016/j.isatra.2023.04.035. Epub 2023 May 4.
9
Simultaneous Fault Detection and Identification in Continuous Processes via nonlinear Support Vector Machine based Feature Selection.
Int Symp Process Syst Eng. 2018;44:2077-2082. doi: 10.1016/B978-0-444-64241-7.50341-4. Epub 2018 Aug 2.

引用本文的文献

1
A Novel Adaptive SFA-LII Based Fault Detection Method for Nonstationary Processes.
ACS Omega. 2025 Jun 6;10(23):24788-24799. doi: 10.1021/acsomega.5c01880. eCollection 2025 Jun 17.

本文引用的文献

1
Slow feature analysis for human action recognition.
IEEE Trans Pattern Anal Mach Intell. 2012 Mar;34(3):436-50. doi: 10.1109/TPAMI.2011.157.
2
A maximum-likelihood interpretation for slow feature analysis.
Neural Comput. 2007 Apr;19(4):1022-38. doi: 10.1162/neco.2007.19.4.1022.
3
What is the relation between slow feature analysis and independent component analysis?
Neural Comput. 2006 Oct;18(10):2495-508. doi: 10.1162/neco.2006.18.10.2495.
4
Slow feature analysis: unsupervised learning of invariances.
Neural Comput. 2002 Apr;14(4):715-70. doi: 10.1162/089976602317318938.
5
Independent component analysis: algorithms and applications.
Neural Netw. 2000 May-Jun;13(4-5):411-30. doi: 10.1016/s0893-6080(00)00026-5.
6
Separation of a mixture of independent signals using time delayed correlations.
Phys Rev Lett. 1994 Jun 6;72(23):3634-3637. doi: 10.1103/PhysRevLett.72.3634.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验