Onel Melis, Kieslich Chris A, Pistikopoulos Efstratios N
Artie McFerrin Dept. of Chemical Engineering, Texas A&M University, College Station, Texas 77843.
AIChE J. 2019 Mar;65(3):992-1005. doi: 10.1002/aic.16497. Epub 2018 Dec 18.
In this article, we present (1) a feature selection algorithm based on nonlinear support vector machine (SVM) for fault detection and diagnosis in continuous processes and (2) results for the Tennessee Eastman benchmark process. The presented feature selection algorithm is derived from the sensitivity analysis of the dual C-SVM objective function. This enables simultaneous modeling and feature selection paving the way for simultaneous fault detection and diagnosis, where feature ranking guides fault diagnosis. We train fault-specific two-class SVM models to detect faulty operations, while using the feature selection algorithm to improve the accuracy and perform the fault diagnosis. Our results show that the developed SVM models outperform the available ones in the literature both in terms of detection accuracy and latency. Moreover, it is shown that the loss of information is minimized with the use of feature selection techniques compared to feature extraction techniques such as principal component analysis (PCA). This further facilitates a more accurate interpretation of the results.
在本文中,我们展示了(1)一种基于非线性支持向量机(SVM)的特征选择算法,用于连续过程中的故障检测与诊断,以及(2)田纳西 - 伊斯曼基准过程的结果。所提出的特征选择算法源自对偶C - SVM目标函数的敏感性分析。这使得同时建模和特征选择成为可能,为同时进行故障检测和诊断铺平了道路,其中特征排序指导故障诊断。我们训练特定故障的二类SVM模型来检测故障操作,同时使用特征选择算法提高准确性并进行故障诊断。我们的结果表明,所开发的SVM模型在检测准确性和延迟方面均优于文献中现有的模型。此外,与主成分分析(PCA)等特征提取技术相比,使用特征选择技术可将信息损失降至最低。这进一步便于对结果进行更准确的解释。