Suppr超能文献

一种基于非线性支持向量机的故障检测与诊断特征选择方法:应用于田纳西伊士曼过程

A Nonlinear Support Vector Machine-Based Feature Selection Approach for Fault Detection and Diagnosis: Application to the Tennessee Eastman Process.

作者信息

Onel Melis, Kieslich Chris A, Pistikopoulos Efstratios N

机构信息

Artie McFerrin Dept. of Chemical Engineering, Texas A&M University, College Station, Texas 77843.

出版信息

AIChE J. 2019 Mar;65(3):992-1005. doi: 10.1002/aic.16497. Epub 2018 Dec 18.

Abstract

In this article, we present (1) a feature selection algorithm based on nonlinear support vector machine (SVM) for fault detection and diagnosis in continuous processes and (2) results for the Tennessee Eastman benchmark process. The presented feature selection algorithm is derived from the sensitivity analysis of the dual C-SVM objective function. This enables simultaneous modeling and feature selection paving the way for simultaneous fault detection and diagnosis, where feature ranking guides fault diagnosis. We train fault-specific two-class SVM models to detect faulty operations, while using the feature selection algorithm to improve the accuracy and perform the fault diagnosis. Our results show that the developed SVM models outperform the available ones in the literature both in terms of detection accuracy and latency. Moreover, it is shown that the loss of information is minimized with the use of feature selection techniques compared to feature extraction techniques such as principal component analysis (PCA). This further facilitates a more accurate interpretation of the results.

摘要

在本文中,我们展示了(1)一种基于非线性支持向量机(SVM)的特征选择算法,用于连续过程中的故障检测与诊断,以及(2)田纳西 - 伊斯曼基准过程的结果。所提出的特征选择算法源自对偶C - SVM目标函数的敏感性分析。这使得同时建模和特征选择成为可能,为同时进行故障检测和诊断铺平了道路,其中特征排序指导故障诊断。我们训练特定故障的二类SVM模型来检测故障操作,同时使用特征选择算法提高准确性并进行故障诊断。我们的结果表明,所开发的SVM模型在检测准确性和延迟方面均优于文献中现有的模型。此外,与主成分分析(PCA)等特征提取技术相比,使用特征选择技术可将信息损失降至最低。这进一步便于对结果进行更准确的解释。

相似文献

2
Simultaneous Fault Detection and Identification in Continuous Processes via nonlinear Support Vector Machine based Feature Selection.
Int Symp Process Syst Eng. 2018;44:2077-2082. doi: 10.1016/B978-0-444-64241-7.50341-4. Epub 2018 Aug 2.
4
Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
IEEE Trans Neural Netw Learn Syst. 2018 Mar;29(3):560-572. doi: 10.1109/TNNLS.2016.2635111. Epub 2016 Dec 22.
5
Integrated Data-Driven Process Monitoring and Explicit Fault-Tolerant Multiparametric Control.
Ind Eng Chem Res. 2020 Feb 12;59(6):2291-2306. doi: 10.1021/acs.iecr.9b04226. Epub 2019 Nov 21.
6
A fault diagnosis method for analog circuits based on EEMD-PSO-SVM.
Heliyon. 2024 Sep 19;10(18):e38064. doi: 10.1016/j.heliyon.2024.e38064. eCollection 2024 Sep 30.
7
Fault diagnosis of a benchmark fermentation process: a comparative study of feature extraction and classification techniques.
Bioprocess Biosyst Eng. 2012 Jun;35(5):689-704. doi: 10.1007/s00449-011-0649-1. Epub 2011 Nov 11.
10
Nonlinear Chemical Process Fault Diagnosis Using Ensemble Deep Support Vector Data Description.
Sensors (Basel). 2020 Aug 16;20(16):4599. doi: 10.3390/s20164599.

引用本文的文献

1
2
Wrist pulse signal based vascular age calculation using mixed Gaussian model and support vector regression.
Health Inf Sci Syst. 2022 Apr 21;10(1):7. doi: 10.1007/s13755-022-00172-0. eCollection 2022 Dec.
4
Integrated Diagnostic Framework for Process and Sensor Faults in Chemical Industry.
Sensors (Basel). 2021 Jan 26;21(3):822. doi: 10.3390/s21030822.
5
Classification of estrogenic compounds by coupling high content analysis and machine learning algorithms.
PLoS Comput Biol. 2020 Sep 24;16(9):e1008191. doi: 10.1371/journal.pcbi.1008191. eCollection 2020 Sep.
7
Integrated Data-Driven Process Monitoring and Explicit Fault-Tolerant Multiparametric Control.
Ind Eng Chem Res. 2020 Feb 12;59(6):2291-2306. doi: 10.1021/acs.iecr.9b04226. Epub 2019 Nov 21.
8
Grouping of complex substances using analytical chemistry data: A framework for quantitative evaluation and visualization.
PLoS One. 2019 Oct 10;14(10):e0223517. doi: 10.1371/journal.pone.0223517. eCollection 2019.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验