Suppr超能文献

基于离子液体中新型隧道传输现象的多糖点击修饰

Click Modification for Polysaccharides via Novel Tunnel Transmission Phenomenon in Ionic Liquids.

作者信息

Zhou Yan, Zhang Jinming, Cheng Yaohui, Zhang Xin, Wu Jin, Zhang Jun

机构信息

CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Research (Wash D C). 2022 Feb 10;2022:9853529. doi: 10.34133/2022/9853529. eCollection 2022.

Abstract

It is extremely difficult to achieve a rapid and efficient modification of natural polysaccharides, due to the intrinsic strong hydrogen bonding networks and the slow mass transfer process during the reaction process. Herein, we found a fascinating anion-tunnel transmission phenomenon in the imidazolium-based ionic liquids with carboxylate anions. A novel click esterification of natural polysaccharides thus was demonstrated under a catalyst-free condition within a very short reaction time of 15 min at 0-80°C. Such a super-rapid and highly efficient modification strategy is available for various polysaccharides (cellulose, starch, inulin, pullulan, dextran, and xylan), different esterification reactions (acetification, propionation, benzoylation, and cyclohexyl formylation), and high concentrations, claiming a revolutionary potential in polysaccharide chemistry industries.

摘要

由于天然多糖固有的强氢键网络以及反应过程中缓慢的传质过程,实现对其快速高效的改性极为困难。在此,我们在含羧酸盐阴离子的咪唑基离子液体中发现了一种引人入胜的阴离子隧道传输现象。因此,在0-80°C下仅15分钟的极短反应时间内,在无催化剂条件下证明了一种天然多糖的新型点击酯化反应。这种超快速且高效的改性策略适用于各种多糖(纤维素、淀粉、菊粉、支链淀粉、葡聚糖和木聚糖)、不同的酯化反应(乙酰化、丙酰化、苯甲酰化和环己基甲酰化)以及高浓度体系,在多糖化学工业中具有革命性潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2670/8857704/2a235bd50888/RESEARCH2022-9853529.001.jpg

相似文献

1
Click Modification for Polysaccharides via Novel Tunnel Transmission Phenomenon in Ionic Liquids.
Research (Wash D C). 2022 Feb 10;2022:9853529. doi: 10.34133/2022/9853529. eCollection 2022.
2
Super-rapid and highly-efficient esterification of cellulose to achieve an accurate chromatographic analysis of its molecular weight.
Carbohydr Polym. 2022 Jun 15;286:119301. doi: 10.1016/j.carbpol.2022.119301. Epub 2022 Mar 1.
3
The effects of acetate anion on cellulose dissolution and reaction in imidazolium ionic liquids.
Carbohydr Res. 2011 Sep 27;346(13):1985-90. doi: 10.1016/j.carres.2011.05.022. Epub 2011 May 27.
5
A novel strategy to utilize ethylene glycol-ionic liquids for the selective precipitation of polysaccharides.
J Sep Sci. 2019 May;42(9):1757-1767. doi: 10.1002/jssc.201801297. Epub 2019 Mar 13.
6
Probing anion-cellulose interactions in imidazolium-based room temperature ionic liquids: a density functional study.
Carbohydr Res. 2010 Oct 13;345(15):2201-5. doi: 10.1016/j.carres.2010.07.036. Epub 2010 Aug 6.
7
A green approach for starch modification: Esterification by lipase and novel imidazolium surfactant.
Carbohydr Polym. 2016 Oct 5;150:359-68. doi: 10.1016/j.carbpol.2016.05.038. Epub 2016 May 16.
8
Click grafting of seaweed polysaccharides onto PVC surfaces using an ionic liquid as solvent and catalyst.
Carbohydr Polym. 2013 Nov 6;98(2):1644-9. doi: 10.1016/j.carbpol.2013.07.079. Epub 2013 Aug 14.
10
Efficient synthesis of polysaccharide with high selenium content mediated by imidazole-based acidic ionic liquids.
Carbohydr Polym. 2019 Jan 1;203:157-166. doi: 10.1016/j.carbpol.2018.09.047. Epub 2018 Sep 24.

引用本文的文献

2
Facile Separation of Acetic Acid from 1-Ethyl-3-methylimidazolium Acetate Ionic Liquid with the Aid of a Protic Solvent.
J Phys Chem B. 2024 Mar 21;128(11):2755-2761. doi: 10.1021/acs.jpcb.3c07225. Epub 2024 Mar 10.
4
A Scalable Bacterial Cellulose Ionogel for Multisensory Electronic Skin.
Research (Wash D C). 2022 Jun 2;2022:9814767. doi: 10.34133/2022/9814767. eCollection 2022.

本文引用的文献

1
Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials.
Adv Mater. 2021 Jul;33(28):e2000717. doi: 10.1002/adma.202000717. Epub 2020 Apr 9.
2
Chemical modifications of polysaccharides and their anti-tumor activities.
Carbohydr Polym. 2020 Feb 1;229:115436. doi: 10.1016/j.carbpol.2019.115436. Epub 2019 Oct 5.
3
The promise of plastics from plants.
Science. 2017 Nov 17;358(6365):868-870. doi: 10.1126/science.aao6711.
4
Multiscale Studies on Ionic Liquids.
Chem Rev. 2017 May 24;117(10):6636-6695. doi: 10.1021/acs.chemrev.6b00776. Epub 2017 May 10.
5
Sustainable polymers from renewable resources.
Nature. 2016 Dec 14;540(7633):354-362. doi: 10.1038/nature21001.
6
Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers.
Chem Rev. 2016 Feb 10;116(3):1094-138. doi: 10.1021/acs.chemrev.5b00317. Epub 2015 Sep 24.
7
Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides.
Chem Rev. 2016 Feb 10;116(3):1637-69. doi: 10.1021/acs.chemrev.5b00264. Epub 2015 Aug 20.
8
Structure and nanostructure in ionic liquids.
Chem Rev. 2015 Jul 8;115(13):6357-426. doi: 10.1021/cr500411q. Epub 2015 Jun 1.
9
Ionic liquids: not only structurally but also dynamically heterogeneous.
Angew Chem Int Ed Engl. 2015 Jan 7;54(2):687-90. doi: 10.1002/anie.201409136. Epub 2014 Nov 19.
10
Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine.
Carbohydr Polym. 2013 Jan 30;92(1):307-11. doi: 10.1016/j.carbpol.2012.08.111. Epub 2012 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验