Lin Zhexi, Ammal Salai C, Denny Steven R, Rykov Sergei A, You Kyung-Eun, Heyden Andreas, Chen Jingguang G
Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States.
JACS Au. 2022 Jan 3;2(2):367-379. doi: 10.1021/jacsau.1c00403. eCollection 2022 Feb 28.
Controlled C-O bond scission is an important step for upgrading glycerol, a major byproduct from the continuously increasing biodiesel production. Transition metal nitride catalysts have been identified as promising hydrodeoxygenation (HDO) catalysts, but fundamental understanding regarding the active sites of the catalysts and reaction mechanism remains unclear. This work demonstrates a fundamental surface science study of MoN and Cu/MoN for the selective HDO reaction of glycerol, using a combination of model surface experiments and first-principles calculations. Temperature-programmed desorption (TPD) experiments showed that clean MoN cleaved two or three C-O bonds of glycerol to produce allyl alcohol, propanal, and propylene. The addition of Cu to MoN changed the reaction pathway to one C-O bond scission to produce acetol. High-resolution electron energy loss spectroscopy (HREELS) results identified the surface intermediates, showing a facile C-H bond activation on MoN. Density functional theory (DFT) calculations revealed that the surface N on MoN interacted with the H atoms in glycerol and blocked some Mo sites to enable selective C-O bond scission. This work shows that MoN and Cu/MoN are active and selective for the controlled C-O bond scission of glycerol and in turn provides insights into the rational catalyst design for selective oxygen removal of relevant biomass-derived oxygenates.
可控的C-O键断裂是甘油升级的重要步骤,甘油是生物柴油产量不断增加所产生的主要副产物。过渡金属氮化物催化剂已被确定为有前景的加氢脱氧(HDO)催化剂,但关于催化剂活性位点和反应机理的基本认识仍不明确。这项工作结合模型表面实验和第一性原理计算,对MoN和Cu/MoN用于甘油选择性HDO反应进行了基础表面科学研究。程序升温脱附(TPD)实验表明,清洁的MoN会断裂甘油的两个或三个C-O键,生成烯丙醇、丙醛和丙烯。向MoN中添加Cu改变了反应途径,使其只断裂一个C-O键生成丙酮醇。高分辨率电子能量损失谱(HREELS)结果确定了表面中间体,表明在MoN上C-H键易于活化。密度泛函理论(DFT)计算表明,MoN上的表面N与甘油中的H原子相互作用,阻塞了一些Mo位点,从而实现选择性C-O键断裂。这项工作表明,MoN和Cu/MoN对甘油的可控C-O键断裂具有活性和选择性,进而为相关生物质衍生含氧化合物选择性脱氧的合理催化剂设计提供了见解。