Suppr超能文献

用于CO辅助乙烷活化的双金属衍生催化结构

Bimetallic-Derived Catalytic Structures for CO-Assisted Ethane Activation.

作者信息

Xie Zhenhua, Chen Jingguang G

机构信息

Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.

Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.

出版信息

Acc Chem Res. 2023 Sep 19;56(18):2447-2458. doi: 10.1021/acs.accounts.3c00348. Epub 2023 Aug 30.

Abstract

ConspectusIn recent years, the simultaneous upgrading of CO and ethane has emerged as a promising approach for generating valuable gaseous (CO, H, and ethylene) and liquid (aromatics and C3 oxygenates) chemicals from the greenhouse gas CO and large-reserved shale gas. The key challenges for controlling product selectivity lie in the selective C-H and C-C bond cleavage of ethane with the assistance of CO. Bimetallic-derived catalysts likely undergo alloying or oxygen-induced segregation under reaction conditions, thus providing diverse types of interfacial sites, e.g., metal/support (M/M'O) interface and metal oxide/metal (M'O/M) inverse interface, that are beneficial for selective CO-assisted ethane upgrading. The alloying extent can be initially predicted by cohesive energy and atomic radius (or Wigner-Seitz radius), while the preference for segregation to form the on-top suboxide can be approximated using the work function, electronegativity, and binding strength of adsorbed oxygen. Furthermore, bimetallic-derived catalysts are typically supported on high surface area oxides. Modifying the reducibility and acidity/basicity of the oxide supports and introducing surface defects facilitate CO activation and oxygen supplies for ethane activation.Using in situ synchrotron characterization and density functional theory (DFT) calculations, we found that the electronic properties of oxygen species influence the selective cleavage of C-H/C-C bonds in ethane, with electron-deficient oxygen over the metal (or alloy) surface promoting nonselective bond scission to produce syngas and electron-enriched oxygen over the metal oxide/metal interface enhancing selective C-H scission to yield ethylene. We further demonstrate that the preferred structures of the catalyst surfaces, either alloy surfaces or metal oxide/metal inverse interfaces, can be controlled through the appropriate choice of metal combinations and their atomic ratios. Through a comprehensive comparison of experimental results and DFT calculations, the selectivity of C-C/C-H bond scission is correlated with the thermodynamically favorable bimetallic-derived structures (i.e., alloy surfaces or metal oxide/metal inverse interfaces) under reaction conditions over a wide range of bimetallic catalysts. These findings not only offer structural and mechanistic insights into bimetallic-derived catalysts but also provide design principles for selective catalysts for CO-assisted activation of ethane and other light alkanes. This Account concludes by discussing challenges and opportunities in designing advanced bimetallic-derived catalysts, incorporating new reaction chemistries for other products, employing precise synthesis strategies for well-defined structures with optimized site densities, and leveraging time/spatial/energy-resolved in situ spectroscopy/scattering/microscopy techniques for comprehensive structural analysis. The research methodologies established here are helpful for the investigation of dynamic alloy and interfacial structures and should inspire more efforts toward the simultaneous upgrading of CO and shale gas.

摘要

综述

近年来,将一氧化碳(CO)和乙烷同时升级转化,已成为一种颇具前景的方法,可从温室气体CO和储量丰富的页岩气中制备有价值的气态(CO、H和乙烯)及液态(芳烃和C3含氧化合物)化学品。控制产物选择性的关键挑战在于,在CO的辅助下对乙烷进行选择性的C-H和C-C键裂解。双金属衍生催化剂在反应条件下可能会发生合金化或氧诱导偏析,从而提供多种类型的界面位点,例如金属/载体(M/M'O)界面和金属氧化物/金属(M'O/M)反相界面,这些界面有利于CO辅助的乙烷选择性升级。合金化程度最初可以通过结合能和原子半径(或维格纳-赛茨半径)来预测,而形成表面亚氧化物的偏析倾向可以用逸出功、电负性和吸附氧的结合强度来近似估算。此外,双金属衍生催化剂通常负载在高比表面积的氧化物上。改变氧化物载体的还原性和酸碱性,并引入表面缺陷,有助于CO的活化以及为乙烷活化提供氧源。

通过原位同步辐射表征和密度泛函理论(DFT)计算,我们发现氧物种的电子性质会影响乙烷中C-H/C-C键的选择性裂解,金属(或合金)表面缺电子的氧促进非选择性键断裂生成合成气,而金属氧化物/金属界面上富电子的氧增强选择性C-H裂解生成乙烯。我们进一步证明,通过适当选择金属组合及其原子比,可以控制催化剂表面的优选结构,即合金表面或金属氧化物/金属反相界面。通过对实验结果和DFT计算的全面比较,在广泛的双金属催化剂范围内,C-C/C-H键裂解的选择性与反应条件下热力学上有利的双金属衍生结构(即合金表面或金属氧化物/金属反相界面)相关。这些发现不仅为双金属衍生催化剂提供了结构和机理方面的见解,还为CO辅助活化乙烷及其他轻质烷烃的选择性催化剂提供了设计原则。本综述最后讨论了设计先进双金属衍生催化剂时面临的挑战和机遇,包括引入用于其他产物的新反应化学、采用精确的合成策略制备具有优化位点密度的明确结构,以及利用时间/空间/能量分辨的原位光谱/散射/显微镜技术进行全面的结构分析。这里建立的研究方法有助于研究动态合金和界面结构,并应激发更多人致力于CO和页岩气的同时升级转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验