Suppr超能文献

考察不同疾病严重程度下患者对医生审查帮助的感知的决定因素:一种机器学习方法。

Examining the Determinants of Patient Perception of Physician Review Helpfulness across Different Disease Severities: A Machine Learning Approach.

机构信息

Department of Computing Engineering, Gachon University, Seoul 13120, Republic of Korea.

Department of Physics, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431-0991, USA.

出版信息

Comput Intell Neurosci. 2022 Feb 26;2022:8623586. doi: 10.1155/2022/8623586. eCollection 2022.

Abstract

(1) . Patients are increasingly using physician online reviews (PORs) to learn about the quality of care. Patients benefit from the use of PORs and physicians need to be aware of how this evaluation affects their treatment decisions. The current work aims to investigate the influence of critical quantitative and qualitative factors on physician review helpfulness (RH). (2) . The data including 45,300 PORs across multiple disease types were scraped from . Grounded on the signaling theory, machine learning-based mixed methods approaches (i.e., text mining and econometric analyses) were performed to test study hypotheses and address the research questions. Machine learning algorithms were used to classify the data set with review- and service-related features through a confusion matrix. (3) . Regarding review-related signals, RH is primarily influenced by review readability, wordiness, and specific emotions (positive and negative). With regard to service-related signals, the results imply that service quality and popularity are critical to RH. Moreover, review wordiness, service quality, and popularity are better predictors for perceived RH for serious diseases than they are for mild diseases. (4) . The findings of the empirical investigation suggest that platform designers should design a recommendation system that reduces search time and cognitive processing costs in order to assist patients in making their treatment decisions. This study also discloses the point that reviews and service-related signals influence physician RH. Using the machine learning-based sentic computing framework, the findings advance our understanding of the important role of discrete emotions in determining perceived RH. Moreover, the research also contributes by comparing the effects of different signals on perceived RH across different disease types.

摘要

(1). 患者越来越多地使用医生在线评论(PORs)来了解护理质量。患者从使用 PORs 中受益,而医生需要意识到这种评估如何影响他们的治疗决策。目前的工作旨在研究关键的定量和定性因素对医生评论有用性(RH)的影响。(2). 从多个疾病类型中提取了包括 45300 条 PORs 的数据。基于信号理论,采用基于机器学习的混合方法(即文本挖掘和计量经济学分析)对研究假设进行了检验,并解决了研究问题。机器学习算法用于通过混淆矩阵对具有评论和服务相关特征的数据进行分类。(3). 就评论相关信号而言,RH 主要受评论可读性、冗长程度和特定情绪(积极和消极)的影响。就服务相关信号而言,结果表明服务质量和知名度对 RH 至关重要。此外,评论冗长程度、服务质量和知名度对严重疾病的感知 RH 的预测作用要好于对轻度疾病的预测作用。(4). 实证研究的结果表明,平台设计者应设计一个推荐系统,以减少搜索时间和认知处理成本,从而帮助患者做出治疗决策。这项研究还揭示了评论和服务相关信号影响医生 RH 的观点。通过使用基于机器学习的情感计算框架,研究结果加深了我们对离散情绪在确定感知 RH 中的重要作用的理解。此外,该研究还通过比较不同疾病类型之间不同信号对感知 RH 的影响来做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b96/8898122/096bc5ec59f4/CIN2022-8623586.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验