Department of Computing Engineering, Gachon University, Seoul 13120, Korea.
Department of Physics, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL 33431-0991, USA.
Int J Environ Res Public Health. 2021 Oct 26;18(21):11226. doi: 10.3390/ijerph182111226.
(1) Background: The appearance of physician rating websites (PRWs) has raised researchers' interest in the online healthcare field, particularly how users consume information available on PRWs in terms of online physician reviews and providers' information in their decision-making process. The aim of this study is to consistently review the early scientific literature related to digital healthcare platforms, summarize key findings and study features, identify literature deficiencies, and suggest digital solutions for future research. (2) Methods: A systematic literature review using key databases was conducted to search published articles between 2010 and 2020 and identified 52 papers that focused on PRWs, different signals in the form of PRWs' features, the findings of these studies, and peer-reviewed articles. The research features and main findings are reported in tables and figures. (3) Results: The review of 52 papers identified 22 articles for online reputation, 15 for service popularity, 16 for linguistic features, 15 for doctor-patient concordance, 7 for offline reputation, and 11 for trustworthiness signals. Out of 52 studies, 75% used quantitative techniques, 12% employed qualitative techniques, and 13% were mixed-methods investigations. The majority of studies retrieved larger datasets using machine learning techniques (44/52). These studies were mostly conducted in China (38), the United States (9), and Europe (3). The majority of signals were positively related to the clinical outcomes. Few studies used conventional surveys of patient treatment experience (5, 9.61%), and few used panel data (9, 17%). These studies found a high degree of correlation between these signals with clinical outcomes. (4) Conclusions: PRWs contain valuable signals that provide insights into the service quality and patient treatment choice, yet it has not been extensively used for evaluating the quality of care. This study offers implications for researchers to consider digital solutions such as advanced machine learning and data mining techniques to test hypotheses regarding a variety of signals on PRWs for clinical decision-making.
(1) 背景:医生评级网站 (PRW) 的出现引起了研究人员对在线医疗保健领域的兴趣,特别是用户如何在决策过程中使用 PRW 上的在线医生评论和提供商信息。本研究的目的是一致地回顾与数字医疗保健平台相关的早期科学文献,总结关键发现和研究特征,识别文献中的不足,并为未来的研究提出数字解决方案。
(2) 方法:使用关键数据库进行了系统的文献回顾,以搜索 2010 年至 2020 年期间发表的文章,并确定了 52 篇专注于 PRW、PRW 特征形式的不同信号、这些研究的发现以及同行评议文章的论文。研究特征和主要发现以表格和图形的形式报告。
(3) 结果:对 52 篇论文的回顾确定了 22 篇关于在线声誉的文章、15 篇关于服务知名度的文章、16 篇关于语言特征的文章、15 篇关于医患一致性的文章、7 篇关于离线声誉的文章和 11 篇关于可信度信号的文章。在 52 项研究中,75%使用了定量技术,12%使用了定性技术,13%是混合方法调查。大多数研究使用机器学习技术检索更大的数据集(44/52)。这些研究主要在中国(38)、美国(9)和欧洲(3)进行。大多数信号与临床结果呈正相关。很少有研究使用常规的患者治疗经验调查(5,9.61%),也很少有研究使用面板数据(9,17%)。这些研究发现这些信号与临床结果之间存在高度相关性。
(4) 结论:PRW 包含有价值的信号,可以深入了解服务质量和患者治疗选择,但尚未广泛用于评估护理质量。本研究为研究人员提供了启示,建议考虑使用先进的机器学习和数据挖掘技术等数字解决方案,以测试关于 PRW 上各种信号的假设,从而为临床决策提供参考。