Suppr超能文献

睡眠期间使用可穿戴 EEG 设备对低幅度慢波进行同相信号听觉刺激的实时算法基准测试。

Benchmarking Real-Time Algorithms for In-Phase Auditory Stimulation of Low Amplitude Slow Waves With Wearable EEG Devices During Sleep.

出版信息

IEEE Trans Biomed Eng. 2022 Sep;69(9):2916-2925. doi: 10.1109/TBME.2022.3157468. Epub 2022 Aug 19.

Abstract

OBJECTIVE

In-phase stimulation of EEG slow waves (SW) during deep sleep has shown to improve cognitive function. SW enhancement is particularly desirable in subjects with low-amplitude SW such as older adults or patients suffering from neurodegeneration. However, existing algorithms to estimate the up-phase of EEG suffer from a poor phase accuracy at low amplitudes and when SW frequencies are not constant.

METHODS

We introduce two novel algorithms for real-time EEG phase estimation on autonomous wearable devices, a phase-locked loop (PLL) and, for the first time, a phase vocoder (PV). We compared these phase tracking algorithms with a simple amplitude threshold approach. The optimized algorithms were benchmarked for phase accuracy, the capacity to estimate phase at SW amplitudes between 20 and 60 μV, and SW frequencies above 1 Hz on 324 home-based recordings from healthy older adults and Parkinson disease (PD) patients. Furthermore, the algorithms were implemented on a wearable device and the computational efficiency and the performance was evaluated in simulation and with a PD patient.

RESULTS

All three algorithms delivered more than 70% of the stimulation triggers during the SW up-phase. The PV showed the highest capacity on targeting low-amplitude SW and SW with frequencies above 1 Hz. The hardware testing revealed that both PV and PLL have marginal impact on microcontroller load, while the efficiency of the PV was 4% lower. Active stimulation did not influence the phase tracking.

CONCLUSION

This work demonstrated that phase-accurate auditory stimulation can also be delivered during fully remote sleep interventions in populations with low-amplitude SW.

摘要

目的

在深睡眠期间对脑电图慢波(SW)进行同相刺激已被证明可以改善认知功能。在 SW 振幅较低(如老年人或患有神经退行性疾病的患者)或 SW 频率不稳定的情况下,增强 SW 特别可取。

方法

我们引入了两种用于自主可穿戴设备上实时 EEG 相位估计的新算法,锁相环(PLL)和首次引入的相位声码器(PV)。我们将这些相位跟踪算法与简单的幅度阈值方法进行了比较。优化后的算法在相位精度、在 20 至 60 μV 之间的 SW 幅度以及 1 Hz 以上的 SW 频率下估计相位的能力方面进行了基准测试,这些测试是在来自健康老年人和帕金森病(PD)患者的 324 个家庭记录上进行的。此外,该算法已在可穿戴设备上实现,并在模拟和 PD 患者中评估了计算效率和性能。

结果

所有三种算法在 SW 上升阶段都能提供超过 70%的刺激触发。PV 在针对低幅度 SW 和 1 Hz 以上频率的 SW 方面表现出最高的能力。硬件测试表明,PV 和 PLL 对微控制器负载的影响都很小,而 PV 的效率低 4%。主动刺激不会影响相位跟踪。

结论

这项工作表明,在具有低振幅 SW 的人群中进行完全远程睡眠干预时,也可以进行精确相位的听觉刺激。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验