Suppr超能文献

图像修复:局部与全局细化

Image Inpainting With Local and Global Refinement.

出版信息

IEEE Trans Image Process. 2022;31:2405-2420. doi: 10.1109/TIP.2022.3152624. Epub 2022 Mar 15.

Abstract

Image inpainting has made remarkable progress with recent advances in deep learning. Popular networks mainly follow an encoder-decoder architecture (sometimes with skip connections) and possess sufficiently large receptive field, i.e., larger than the image resolution. The receptive field refers to the set of input pixels that are path-connected to a neuron. For image inpainting task, however, the size of surrounding areas needed to repair different kinds of missing regions are different, and the very large receptive field is not always optimal, especially for the local structures and textures. In addition, a large receptive field tends to involve more undesired completion results, which will disturb the inpainting process. Based on these insights, we rethink the process of image inpainting from a different perspective of receptive field, and propose a novel three-stage inpainting framework with local and global refinement. Specifically, we first utilize an encoder-decoder network with skip connection to achieve coarse initial results. Then, we introduce a shallow deep model with small receptive field to conduct the local refinement, which can also weaken the influence of distant undesired completion results. Finally, we propose an attention-based encoder-decoder network with large receptive field to conduct the global refinement. Experimental results demonstrate that our method outperforms the state of the arts on three popular publicly available datasets for image inpainting. Our local and global refinement network can be directly inserted into the end of any existing networks to further improve their inpainting performance. Code is available at https://github.com/weizequan/LGNet.git.

摘要

随着深度学习技术的发展,图像修复技术取得了显著的进展。流行的网络主要采用编码器-解码器结构(有时带有跳跃连接),并且具有足够大的感受野,即大于图像分辨率。感受野是指与神经元路径连接的输入像素集合。然而,对于图像修复任务,修复不同类型缺失区域所需的周围区域的大小是不同的,过大的感受野并不总是最优的,尤其是对于局部结构和纹理。此外,过大的感受野往往会涉及更多不想要的补全结果,这会干扰修复过程。基于这些观察,我们从感受野的不同角度重新思考图像修复过程,并提出了一种新颖的具有局部和全局细化的三阶段修复框架。具体来说,我们首先利用带有跳跃连接的编码器-解码器网络来实现粗糙的初始结果。然后,我们引入了一个具有小感受野的浅层深度模型来进行局部细化,这也可以削弱来自远处不想要的补全结果的影响。最后,我们提出了一个具有大感受野的基于注意力的编码器-解码器网络来进行全局细化。实验结果表明,我们的方法在三个流行的公开可用的图像修复数据集上的表现优于最先进的方法。我们的局部和全局细化网络可以直接插入到任何现有网络的末尾,以进一步提高它们的修复性能。代码可在 https://github.com/weizequan/LGNet.git 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验