Suppr超能文献

个性化统计建模踝关节软组织结构。

Personalised statistical modelling of soft tissue structures in the ankle.

机构信息

Department of Orthopaedics and Traumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium.

Department of Orthopaedics and Traumatology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium.

出版信息

Comput Methods Programs Biomed. 2022 May;218:106701. doi: 10.1016/j.cmpb.2022.106701. Epub 2022 Feb 17.

Abstract

BACKGROUND AND OBJECTIVE

Revealing the complexity behind subject-specific ankle joint mechanics requires simultaneous analysis of three-dimensional bony and soft-tissue structures. 3D musculoskeletal models have become pivotal in orthopedic treatment planning and biomechanical research. Since manual segmentation of these models is time-consuming and subject to manual errors, (semi-) automatic methods could improve the accuracy and enlarge the sample size of personalised 'in silico' biomechanical experiments and computer-assisted treatment planning. Therefore, our aim was to automatically predict ligament paths, cartilage topography and thickness in the ankle joint based on statistical shape modelling.

METHODS

A personalised cartilage and ligamentous prediction algorithm was established using geometric morphometrics, based on an 'in-house' generated lower limb skeletal model (N = 542), tibiotalar cartilage (N = 60) and ankle ligament segmentations (N = 10). For cartilage, a population-averaged thickness map was determined by use of partial least-squares regression. Ligaments were wrapped around bony contours based on iterative shortest path calculation. Accuracy of ligament path and cartilage thickness prediction was quantified using leave-one-out experiments. The novel personalised thickness prediction was compared with a constant cartilage thickness of 1.50 mm by use of a paired sample T-test.

RESULTS

Mean distance error of cartilage and ligament prediction was 0.12 mm (SD 0.04 mm) and 0.54 mm (SD 0.05 mm), respectively. No significant differences were found between the personalised thickness cartilage and segmented cartilage of the tibia (p = 0.73, CI [-1.60 .10, 1.13 .10]) and talus (p = 0.95, CI[ -1.35 .10, 1.28 .10]). For the constant thickness cartilage, a statistically significant difference was found in 89% and 92% of the tibial (p < 0.001, CI [0.51, 0.58]) and talar (p < 0.001, CI [0.33, 0.40]) cartilage area.

CONCLUSIONS

In this study, we described a personalised prediction algorithm of cartilage and ligaments in the ankle joint. We were able to predict cartilage and main ankle ligaments with submillimeter accuracy. The proposed method has a high potential for generating large (virtual) sample sizes in biomechanical research and mitigates technological advances in computer-assisted orthopaedic surgery.

摘要

背景与目的

揭示特定于踝关节的关节力学背后的复杂性需要同时分析三维骨骼和软组织结构。3D 肌肉骨骼模型已成为矫形治疗计划和生物力学研究的关键。由于这些模型的手动分割既耗时又容易出现手动错误,因此(半)自动化方法可以提高个性化“计算机模拟”生物力学实验和计算机辅助治疗计划的准确性和样本量。因此,我们的目标是基于统计形状建模自动预测踝关节中的韧带路径、软骨形貌和厚度。

方法

使用基于几何形态计量学的个性化软骨和韧带预测算法,该算法基于“内部”生成的下肢骨骼模型(N=542)、距骨胫骨软骨(N=60)和踝关节韧带分割(N=10)。对于软骨,通过使用偏最小二乘回归确定平均厚度图。基于迭代最短路径计算将韧带包裹在骨骼轮廓周围。通过使用留一法实验定量评估韧带路径和软骨厚度预测的准确性。通过配对样本 T 检验,将新的个性化厚度预测与恒定的 1.50 毫米软骨厚度进行比较。

结果

软骨和韧带预测的平均距离误差分别为 0.12 毫米(SD 0.04 毫米)和 0.54 毫米(SD 0.05 毫米)。胫骨(p=0.73,CI[-1.60 0.10,1.13 0.10])和距骨(p=0.95,CI[-1.35 0.10,1.28 0.10])的个性化厚度软骨和分割软骨之间未发现显著差异。对于恒定厚度的软骨,在胫骨(p<0.001,CI[0.51,0.58])和距骨(p<0.001,CI[0.33,0.40])软骨区域,89%和 92%的情况下均发现了统计学显著差异。

结论

在这项研究中,我们描述了一种预测踝关节软骨和韧带的个性化算法。我们能够以亚毫米的精度预测软骨和主要踝关节韧带。该方法在生物力学研究中生成大(虚拟)样本量方面具有很高的潜力,并减轻了计算机辅助矫形手术中的技术进步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验