Zhang Jin, Fang Cong, Li Yang, An Wei
College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, People's Republic of China.
Nanotechnology. 2022 Mar 25;33(24). doi: 10.1088/1361-6528/ac5bb9.
Exploring the format of active site is essential to further the understanding of an electrocatalyst working under ambient conditions. Herein, we present a DFT study of electrocatalytic nitrogen reduction (eNRR) on Wtetrahedron embedded in graphene-like CN (denoted as W@CN). Our results demonstrate that N-affinity of active sites on Wdominate over single-atom site, rendering *NH + (H + e) →*NHinvariably the potential-determining step (PDS) of eNRR via consecutive or distal route ( = -0.68 V) to ammonia formation. However, *NHNH + (H + e) →*NHNHhas become the PDS ( = -0.54 V) via enzymatic route towards NHNHformation and thereafter desorption, making W@CN a potentially promising catalyst for hydrazine production from eNRR. Furthermore, eNRR is competitive with hydrogen evolution reaction ( = -0.78 V) on W@CN, which demonstrated sufficient thermal stability and electric property for electrode application.
探索活性位点的结构对于深入理解在环境条件下工作的电催化剂至关重要。在此,我们展示了对嵌入类石墨烯碳氮化物(表示为W@CN)中的钨四面体上的电催化氮还原(eNRR)的密度泛函理论(DFT)研究。我们的结果表明,钨上活性位点的氮亲和力超过单原子位点,使得*NH + (H + e) → *NH始终是通过连续或远端途径( = -0.68 V)生成氨的eNRR的电位决定步骤(PDS)。然而,*NHNH + (H + e) → *NHNH通过酶促途径生成NHNH并随后解吸已成为PDS( = -0.54 V),这使得W@CN成为通过eNRR生产肼的潜在有前景的催化剂。此外,在W@CN上eNRR与析氢反应( = -0.78 V)具有竞争力,这表明其具有足够的热稳定性和电学性质用于电极应用。