Romo-Herrera Jose Manuel, Guerrero-Sanchez Jonathan
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada B.C. 22860, México.
ACS Mater Au. 2025 Jan 31;5(3):441-450. doi: 10.1021/acsmaterialsau.4c00166. eCollection 2025 May 14.
The oxygen reduction reaction (ORR) is an electrochemical process that is key to tackling global concerns regarding the conversion and storage of clean energy as well as the development of sustainable water treatment. We mainly focus on nonprecious metal catalysts, specifically harnessing Carbon-based electrocatalysts. In the current invited perspective, we highlight three main ways to control the ORR selectivity, which is still a challenge under development: (i) engineering the active sites where the use of single-atom, double-atom, or small clusters of atoms of transition metals in the carbon matrix allow including more active sites for the reaction, (ii) using coordination shells and modifying the local environment of the active-sites with more electronegative elements generates a strong positive electrostatic potential in the active site thus improving the metal-O interaction, and (iii) using spin-selection with magnetic single atoms where the magnetic moment strength of the single-atom and the triplet-to-singlet transition in the O after adsorption. More attention should be paid to this effect since the magnetic properties are directly correlated with the O adsorption strength, and at the same time, the selectivity of the O adsorption is directly related to the two- or four-electron pathway. Selectivity is commonly discussed in carbon-based catalysts but is not always linked to atomistic effects. Therefore, it is necessary to understand and rationally design alternative electrocatalysts that can synergistically combine active transition metal centers, different local environments in their coordination shells, and magnetic control.
氧还原反应(ORR)是一种电化学过程,对于解决全球清洁能源转换与存储以及可持续水处理发展方面的问题至关重要。我们主要关注非贵金属催化剂,特别是利用碳基电催化剂。在当前这篇特邀观点文章中,我们重点介绍控制ORR选择性的三种主要方法,这在当前仍是一个有待攻克的挑战:(i)设计活性位点,在碳基体中使用过渡金属的单原子、双原子或小原子簇可包含更多反应活性位点;(ii)利用配位壳层并用电负性更强的元素修饰活性位点的局部环境,在活性位点产生强正静电势,从而改善金属 - 氧相互作用;(iii)使用具有磁矩的单原子进行自旋选择,其中单原子的磁矩强度以及吸附后氧的三重态到单重态跃迁。由于磁性性质与氧吸附强度直接相关,同时氧吸附的选择性与双电子或四电子途径直接相关,因此应更多关注这种效应。选择性在碳基催化剂中通常会被讨论,但并不总是与原子效应相关联。因此,有必要理解并合理设计能够将活性过渡金属中心、其配位壳层中不同的局部环境以及磁控协同结合起来的替代电催化剂。