Zou Haiyuan, Rong Weifeng, Wei Shuting, Ji Yongfei, Duan Lele
Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China.
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29462-29468. doi: 10.1073/pnas.2015108117. Epub 2020 Nov 10.
Using renewable electricity to synthesize ammonia from nitrogen paves a sustainable route to making value-added chemicals but yet requires further advances in electrocatalyst development and device integration. By engineering both electrocatalyst and electrolyzer to simultaneously regulate chemical kinetics and thermodynamic driving forces of the electrocatalytic nitrogen reduction reaction (ENRR), we report herein stereoconfinement-induced densely populated metal single atoms (Rh, Ru, Co) on graphdiyne (GDY) matrix (formulated as M SA/GDY) and realized a boosted ENRR activity in a pressurized reaction system. Remarkably, under the pressurized environment, the hydrogen evolution reaction of M SA/GDY was effectively suppressed and the desired ENRR activity was strongly amplificated. As a result, the pressurized ENRR activity of Rh SA/GDY at 55 atm exhibited a record-high NH formation rate of 74.15 μg h⋅cm, a Faraday efficiency of 20.36%, and a NH partial current of 0.35 mA cm at -0.20 V versus reversible hydrogen electrode, which, respectively, displayed 7.3-, 4.9-, and 9.2-fold enhancements compared with those obtained under ambient conditions. Furthermore, a time-independent ammonia yield rate using purified N confirmed the concrete ammonia electroproduction. Theoretical calculations reveal that the driving force for the formation of end-on N* on Rh SA/GDY increased by 9.62 kJ/mol under the pressurized conditions, facilitating the ENRR process. We envisage that the cooperative regulations of catalysts and electrochemical devices open up the possibilities for industrially viable electrochemical ammonia production.
利用可再生电力将氮气合成氨为制造增值化学品铺平了一条可持续的道路,但在电催化剂开发和器件集成方面仍需要进一步进展。通过对电催化剂和电解槽进行工程设计,以同时调节电催化氮还原反应(ENRR)的化学动力学和热力学驱动力,我们在此报告了在石墨炔(GDY)基质上通过立体限域诱导的密集分布的金属单原子(Rh、Ru、Co)(表示为M SA/GDY),并在加压反应系统中实现了增强的ENRR活性。值得注意的是,在加压环境下,M SA/GDY的析氢反应得到有效抑制,所需的ENRR活性得到强烈放大。结果,Rh SA/GDY在55个大气压下的加压ENRR活性表现出创纪录的高NH生成速率,为74.15 μg h⋅cm,法拉第效率为20.36%,在相对于可逆氢电极-0.20 V时NH的分电流为0.35 mA cm,与在环境条件下获得的结果相比,分别提高了7.3倍、4.9倍和9.2倍。此外,使用纯化的N获得的与时间无关的氨产率证实了具体的氨电合成。理论计算表明,在加压条件下,Rh SA/GDY上末端吸附N*形成的驱动力增加了9.62 kJ/mol,促进了ENRR过程。我们设想,催化剂和电化学装置的协同调控为工业上可行的电化学氨生产开辟了可能性。