Suppr超能文献

ASARA,一种基于 Child-Pugh 分级的肝细胞癌患者经动脉化疗栓塞术的预测模型。

ASARA, a prediction model based on Child-Pugh class in hepatocellular carcinoma patients undergoing transarterial chemoembolization.

机构信息

Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China; Department of Radiology, Tianjin Third Central Hospital, Tianjin 300170, China.

Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin 300192, China; Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.

出版信息

Hepatobiliary Pancreat Dis Int. 2023 Oct;22(5):490-497. doi: 10.1016/j.hbpd.2022.02.007. Epub 2022 Feb 25.

Abstract

BACKGROUND

Due to the high heterogeneity among hepatocellular carcinoma (HCC) patients receiving transarterial chemoembolization (TACE), the prognosis of patients varies significantly. The decision-making on the initiation and/or repetition of TACE under different liver functions is a matter of concern in clinical practice. Thus, we aimed to develop a prediction model for TACE candidates using risk stratification based on varied liver function.

METHODS

A total of 222 unresectable HCC patients who underwent TACE as their only treatment were included in this study. Cox proportional hazards regression was performed to select the independent risk factors and establish a predictive model for the overall survival (OS). The model was validated in patients with different Child-Pugh class and compared to previous TACE scoring systems.

RESULTS

The five independent risk factors, including alpha-fetoprotein (AFP) level, maximal tumor size, the increase of albumin-bilirubin (ALBI) grade score, tumor response, and the increase of aspartate aminotransferase (AST), were used to build a prognostic model (ASARA). In the training and validation cohorts, the OS of patients with ASARA score ≤ 2 was significantly higher than that of patients with ASARA score > 2 (P < 0.001, P = 0.006, respectively). The ASARA model and its modified version "AS(ARA)" can effectively distinguish the OS (P < 0.001, P = 0.004) between patients with Child-Pugh class A and B, and the C-index was 0.687 and 0.706, respectively. For repeated TACE, the ASARA model was superior to Assessment for Retreatment with TACE (ART) and ALBI grade, maximal tumor size, AFP, and tumor response (ASAR) among Child-Pugh class A patients. For the first TACE, the performance of AS(ARA) was better than that of modified hepatoma arterial-embolization prognostic (mHAP), mHAP3, and ASA(R) models among Child-Pugh class B patients.

CONCLUSIONS

The ASARA scoring system is valuable in the decision-making of TACE repetition for HCC patients, especially Child-Pugh class A patients. The modified AS(ARA) can be used to screen the ideal candidate for TACE initiation in Child-Pugh class B patients with poor liver function.

摘要

背景

由于接受经动脉化疗栓塞术(TACE)的肝细胞癌(HCC)患者之间存在高度异质性,因此患者的预后差异很大。在不同肝功能下启动和/或重复 TACE 的决策是临床实践中的一个关注点。因此,我们旨在基于不同的肝功能,通过风险分层为 TACE 候选者开发一种预测模型。

方法

本研究共纳入 222 例接受 TACE 作为唯一治疗方法的不可切除 HCC 患者。使用 Cox 比例风险回归分析选择独立的危险因素,并建立总生存期(OS)的预测模型。在不同的 Child-Pugh 分级的患者中验证该模型,并与之前的 TACE 评分系统进行比较。

结果

五个独立的危险因素,包括甲胎蛋白(AFP)水平、最大肿瘤大小、白蛋白-胆红素(ALBI)分级评分增加、肿瘤反应和天冬氨酸转氨酶(AST)增加,被用于构建预后模型(ASARA)。在训练和验证队列中,ASARA 评分≤2 的患者的 OS 明显高于 ASARA 评分>2 的患者(P<0.001,P=0.006)。ASARA 模型及其改良版“AS(ARA)”可有效区分 Child-Pugh 分级为 A 和 B 的患者的 OS(P<0.001,P=0.004),C 指数分别为 0.687 和 0.706。对于重复 TACE,ASARA 模型在 Child-Pugh 分级为 A 的患者中优于评估重复 TACE(ART)和 ALBI 分级、最大肿瘤大小、AFP 和肿瘤反应(ASAR)。对于首次 TACE,AS(ARA)在 Child-Pugh 分级为 B 的患者中的表现优于改良肝癌动脉栓塞预后(mHAP)、mHAP3 和 ASA(R)模型。

结论

ASARA 评分系统在 HCC 患者重复 TACE 决策中具有价值,特别是在 Child-Pugh 分级为 A 的患者中。改良的 AS(ARA)可用于筛选肝功能较差的 Child-Pugh 分级为 B 的患者中 TACE 启动的理想候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验