Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA.
Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
Nat Commun. 2022 Mar 8;13(1):1202. doi: 10.1038/s41467-022-28789-5.
Established models of ternary complex formation between hormone, G protein coupled receptor (GPCR), and G protein assume that all interactions occur under equilibrium conditions. However, recent studies have established that the lifetimes of these interactions are comparable to the duration of hormone activated GPCR signaling. To simulate interactions during such non-equilibrium conditions, we propose a kinetic model wherein the receptor undergoes rate-limiting transitions between two hormone-bound active states. Simulations, using experimentally measured parameters, demonstrate transient states in ternary complex formation, and delineate the phenomenon of GPCR priming, wherein non-cognate G proteins substantially enhance cognate G protein signaling. Our model reveals that kinetic barriers of slow receptor interconversion can be overcome through allokairic modulation, a regulatory mechanism of ternary complex formation and downstream signaling.
激素、G 蛋白偶联受体 (GPCR) 和 G 蛋白之间形成三元复合物的已有模型假设所有相互作用都在平衡条件下发生。然而,最近的研究已经确定,这些相互作用的寿命与激素激活 GPCR 信号的持续时间相当。为了在这种非平衡条件下模拟相互作用,我们提出了一个动力学模型,其中受体在两种激素结合的活性状态之间经历限速转变。使用实验测量的参数进行的模拟表明,三元复合物形成中存在瞬态状态,并描绘了 GPCR 引发的现象,其中非同源 G 蛋白大大增强了同源 G 蛋白信号。我们的模型表明,通过变构调节可以克服受体缓慢相互转化的动力学障碍,这是三元复合物形成和下游信号转导的一种调节机制。