Suppr超能文献

通过硅管内植入的疏水性聚四氟乙烯表面收集流动电流作为液体纳米发电机。

Harvesting of flow current through implanted hydrophobic PTFE surface within silicone-pipe as liquid nanogenerator.

作者信息

Cheedarala Ravi Kumar, Song Jung Il

机构信息

Department of Mechanical Engineering, Research Institute of Mechatronics, Changwon National University, Changwon City, Republic of Korea.

出版信息

Sci Rep. 2022 Mar 8;12(1):3700. doi: 10.1038/s41598-022-07614-5.

Abstract

Harvesting of flow current through implanted hydrophobic surface within silicone pipe as liquid nanogenerators where Tap water (TW), and DI water (DIw) as liquid reservoirs to successfully convert induced mechanical energy into electrical energy. Here, we used a commercial PTFE film for the generation of a hydrophobic surface as a source of mechanical energy. The surface roughness of the hydrophobic surface is confirmed using atomic force microscopy, and contact angle analyses. The generation of power through the interaction of TW and DI with inbuilt PTFE in silicone tube is described. The higher output voltage (Voc), and short circuit currents (Isc) were attained through an interaction of TW and DIw with N-PTFE. The lower Voc, and Isc's were produced when DI water interacts with N-PTFE electrode, whereas TW produced higher V and I, respectively, due to a lack of free mobile ions in DIw than TW. The TW-Sh-TENG and DIw-Sh-TENG are produced the maximum peak-to-peak Voc, and Isc of 29.5 V and 17.4 V and 3.7 μA, and 2.9 μA, respectively. Significant power output enhancement of ~ 300% from TW-Sh-TENG from DIw-N-TENG due to the formation of higher surface roughness and lead to the slipping of water droplets by super-hydrophobicity.

摘要

通过硅胶管内植入的疏水表面收集流动电流,以此作为液体纳米发电机,其中将自来水(TW)和去离子水(DIw)作为液体储存器,成功地将感应机械能转化为电能。在此,我们使用商用聚四氟乙烯薄膜来生成疏水表面,作为机械能的来源。使用原子力显微镜和接触角分析来确认疏水表面的粗糙度。描述了通过TW和DI与硅胶管内内置的聚四氟乙烯相互作用产生电能的过程。通过TW和DIw与N-PTFE的相互作用获得了更高的输出电压(Voc)和短路电流(Isc)。当去离子水与N-PTFE电极相互作用时产生较低的Voc和Isc,而由于去离子水中自由移动离子比自来水中少,自来水分别产生了更高的电压和电流。TW-Sh-TENG和DIw-Sh-TENG分别产生了最大峰峰值Voc为29.5 V、Isc为17.4 V以及3.7 μA和2.9 μA。由于形成了更高的表面粗糙度并导致超疏水性使水滴滑落,TW-Sh-TENG的功率输出比DIw-N-TENG显著提高了约300%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88d5/8904805/24d5290dde12/41598_2022_7614_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验