文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化氢氧化铝纳米棒在预防性疫苗中长宽比依赖性佐剂效应的机制理解

Mechanistic understanding of the aspect ratio-dependent adjuvanticity of engineered aluminum oxyhydroxide nanorods in prophylactic vaccines.

作者信息

Liang Zhihui, Wang Xin, Yu Ge, Li Min, Shi Shuting, Bao Hang, Chen Chen, Fu Duo, Ma Wei, Xue Changying, Sun Bingbing

机构信息

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.

School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China.

出版信息

Nano Today. 2022 Apr;43:101445. doi: 10.1016/j.nantod.2022.101445. Epub 2022 Mar 4.


DOI:10.1016/j.nantod.2022.101445
PMID:35261619
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8896059/
Abstract

Aluminum oxyhydroxide (AlOOH) adjuvants are widely used in human vaccines. However, the interaction mechanisms at the material-bio interface, and further understandings on physicochemical property-dependent modulation of the immune responses still remain uncertain. Herein, a library of AlOOH nanorods with well-defined aspect ratios is designed to explore the mechanisms of adjuvanticity. The aspect ratios of AlOOH nanorods were demonstrated to be intrinsically modulated by the hydroxide supersaturation level during crystal growth, leading to the differences in surface free energy (SFE). As a result, higher aspect ratio AlOOH nanoadjuvants with lower SFE exhibited more hydrophobic surface, resulting in more membrane depolarization, cellular uptake and dendritic cell (DC) activation. By using hepatitis B surface antigen (HBsAg) virus-like particles (VLPs) or SARS-CoV-2 spike protein receptor-binding domain (RBD) as model antigens, AlOOH nanorods with higher aspect ratio were determined to elicit more potent humoral immune responses, which could be attributed to the enhanced DC activation and the efficient antigen trafficking to the draining lymph nodes. Our findings highlight the critical role of aspect ratio of AlOOH nanorods in modulating adjuvanticity, and further provide a design strategy for engineered nanoadjuvants for prophylactic vaccines.

摘要

氢氧化铝(AlOOH)佐剂广泛应用于人类疫苗中。然而,材料-生物界面的相互作用机制以及对免疫反应的物理化学性质依赖性调节的进一步理解仍不明确。在此,设计了一系列具有明确纵横比的AlOOH纳米棒库,以探索其佐剂作用机制。结果表明,AlOOH纳米棒的纵横比在晶体生长过程中由氢氧化物过饱和度水平内在调节,导致表面自由能(SFE)的差异。因此,具有较低SFE的较高纵横比的AlOOH纳米佐剂表现出更疏水的表面,导致更多的膜去极化、细胞摄取和树突状细胞(DC)激活。通过使用乙型肝炎表面抗原(HBsAg)病毒样颗粒(VLPs)或严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白受体结合域(RBD)作为模型抗原,确定具有较高纵横比的AlOOH纳米棒能引发更强的体液免疫反应,这可归因于DC激活的增强和抗原向引流淋巴结的有效转运。我们的研究结果突出了AlOOH纳米棒纵横比在调节佐剂作用中的关键作用,并进一步为预防性疫苗的工程纳米佐剂提供了设计策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/fd54479791f8/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/e149f4e1d77c/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/afcaef4b3217/sc1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/e146b5b3de78/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/7e31c5239d59/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/cbaa7a7f4e27/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/8c199289c001/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/fd54479791f8/gr5_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/e149f4e1d77c/ga1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/afcaef4b3217/sc1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/e146b5b3de78/gr1_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/7e31c5239d59/gr2_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/cbaa7a7f4e27/gr3_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/8c199289c001/gr4_lrg.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a26/8896059/fd54479791f8/gr5_lrg.jpg

相似文献

[1]
Mechanistic understanding of the aspect ratio-dependent adjuvanticity of engineered aluminum oxyhydroxide nanorods in prophylactic vaccines.

Nano Today. 2022-4

[2]
Silicon or Calcium Doping Coordinates the Immunostimulatory Effects of Aluminum Oxyhydroxide Nanoadjuvants in Prophylactic Vaccines.

ACS Nano. 2024-7-2

[3]
Aluminum oxyhydroxide-Poly(I:C) combination adjuvant with balanced immunostimulatory potentials for prophylactic vaccines.

J Control Release. 2024-8

[4]
Engineering the hydroxyl content on aluminum oxyhydroxide nanorod for elucidating the antigen adsorption behavior.

NPJ Vaccines. 2022-6-23

[5]
Engineered Hydroxyapatite Nanoadjuvants with Controlled Shape and Aspect Ratios Reveal Their Immunomodulatory Potentials.

ACS Appl Mater Interfaces. 2021-12-22

[6]
Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles.

ACS Nano. 2013-12-23

[7]
Self-assembled aluminum oxyhydroxide nanorices with superior suspension stability for vaccine adjuvant.

J Colloid Interface Sci. 2022-12

[8]
Enhanced Immune Adjuvant Activity of Aluminum Oxyhydroxide Nanorods through Cationic Surface Functionalization.

ACS Appl Mater Interfaces. 2017-6-23

[9]
Aluminum hydroxide adjuvant diverts the uptake and trafficking of genetically detoxified pertussis toxin to lysosomes in macrophages.

Mol Microbiol. 2022-5

[10]
Mechanistic elucidation of freezing-induced surface decomposition of aluminum oxyhydroxide adjuvant.

iScience. 2022-5-23

引用本文的文献

[1]
Innovative adjuvant strategies for next-generation pertussis vaccines.

Hum Vaccin Immunother. 2025-12

[2]
Nano/Micro-Enabled Modification and Innovation of Conventional Adjuvants for Next-Generation Vaccines.

J Funct Biomater. 2025-5-19

[3]
Graphdiyne biomaterials: from characterization to properties and applications.

J Nanobiotechnology. 2025-3-4

[4]
Programmable Stapling Peptide Based on Sulfonium as Universal Vaccine Adjuvants for Multiple Types of Vaccines.

Adv Sci (Weinh). 2025-3

[5]
Next-generation aluminum adjuvants: Immunomodulatory layered double hydroxide NanoAlum reengineered from first-line drugs.

Acta Pharm Sin B. 2024-11

[6]
In vivo quantitative characterization of nano adjuvant transport in the tracheal layer by photoacoustic imaging.

Biomed Opt Express. 2024-5-29

[7]
An Immunomodulatory Zinc-Alum/Ovalbumin Nanovaccine Boosts Cancer Metalloimmunotherapy Through Erythrocyte-Assisted Cascade Immune Activation.

Adv Sci (Weinh). 2024-2

[8]
Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines.

Vaccines (Basel). 2023-6-29

[9]
Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules.

Handb Exp Pharmacol. 2024

[10]
A new samarium complex of 1,3-bis(pyridin-3-ylmethyl)thiourea on boehmite nanoparticles as a practical and recyclable nanocatalyst for the selective synthesis of tetrazoles.

Sci Rep. 2023-4-11

本文引用的文献

[1]
Engineering aluminum hydroxyphosphate nanoparticles with well-controlled surface property to enhance humoral immune responses as vaccine adjuvants.

Biomaterials. 2021-8

[2]
Adjuvants for Coronavirus Vaccines.

Front Immunol. 2020-11-6

[3]
Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses.

Int Immunopharmacol. 2020-6-18

[4]
Cytosolic delivery of HBsAg and enhanced cellular immunity by pH-responsive liposome.

J Control Release. 2020-8-10

[5]
Single-molecule imaging goes high throughput.

Nat Nanotechnol. 2020-6

[6]
An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles.

Anal Chem. 2019-9-13

[7]
Serum levels of IL-5, IL-6, IL-8, IL-13 and IL-17A in pre-defined groups of adult patients with moderate and severe bronchial asthma.

Respir Med. 2019-6-26

[8]
Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity.

Vaccine. 2019-4-29

[9]
Thermostable Ebola virus vaccine formulations lyophilized in the presence of aluminum hydroxide.

Eur J Pharm Biopharm. 2019-1-28

[10]
Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology.

NPJ Vaccines. 2019-1-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索