Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Australia.
Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, Australia.
Tissue Eng Part C Methods. 2022 May;28(5):202-213. doi: 10.1089/ten.TEC.2022.0015.
Contemporary reconstructive approaches for critical size bone defects carry significant disadvantages. As a result, clinically driven research has focused on the development and translation of alternative therapeutic concepts. Scaffold-guided tissue regeneration (SGTR) is an emerging technique to heal critical size bone defects. However, issues synchronizing scaffold vascularization with bone-specific regenerative processes currently limit bone regeneration for extra large (XL, 19 cm) critical bone defects. To address this issue, we developed a large animal model that incorporates a corticoperiosteal flap (CPF) for sustained scaffold neovascularization and bone regeneration. In 10 sheep, we demonstrated the efficacy of this approach for healing medium (M, 9 cm) size critical bone defects as demonstrated on plain radiography, microcomputed tomography, and histology. Furthermore, in two sheep, we demonstrate how this approach can be safely extended to heal XL critical size defects. This article presents an original CPF technique in a well-described preclinical model, which can be used in conjunction with the SGTR concept, to address challenging critical size bone defects . Impact statement This article describes a novel scaffold-guided tissue engineering approach utilizing a corticoperiosteal flap for bone healing in critical size long bone defects. This approach will be of use for tissue engineers and surgeons exploring vascularized tissue transfer as an option to regenerate large volumes of bone for extensive critical size bone defects both and in the clinical arena.
当代治疗临界尺寸骨缺损的方法存在显著的缺点。因此,临床驱动的研究集中于替代治疗概念的开发和转化。支架引导组织再生(SGTR)是一种新兴的技术,用于治疗临界尺寸骨缺损。然而,与骨特异性再生过程同步支架血管化的问题目前限制了特大(XL,19cm)临界骨缺损的骨再生。为了解决这个问题,我们开发了一种大型动物模型,该模型采用皮质骨膜瓣(CPF)来持续促进支架新生血管形成和骨再生。在 10 只绵羊中,我们通过普通放射照相、微计算机断层扫描和组织学证明了这种方法治疗中号(M,9cm)大小临界骨缺损的有效性。此外,在两只绵羊中,我们展示了如何安全地将这种方法扩展到治疗特大临界尺寸缺陷。本文提出了一种在描述良好的临床前模型中使用 CPF 技术的原创方法,该方法可与 SGTR 概念结合使用,用于治疗具有挑战性的临界尺寸骨缺损。影响陈述本文描述了一种利用皮质骨膜瓣促进临界尺寸长骨缺损骨愈合的新型支架引导组织工程方法。这种方法将对探索血管化组织转移作为一种方法来再生大量骨以治疗广泛的临界尺寸骨缺损的组织工程师和外科医生有用,并且在临床领域也有用。