Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States.
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
J Am Chem Soc. 2022 Mar 23;144(11):4746-4753. doi: 10.1021/jacs.2c00273. Epub 2022 Mar 9.
Viral and synthetic vectors for delivery of nucleic acids impacted genetic nanomedicine by aiding the rapid development of the extraordinarily efficient Covid-19 vaccines. Access to targeted delivery of nucleic acids is expected to expand the field of nanomedicine beyond most expectations. Both viral and synthetic vectors have advantages and disadvantages. The major advantage of the synthetic vectors is their unlimited synthetic capability. The four-component lipid nanoparticles (LNPs) are the leading nonviral vector for mRNA used by Pfizer and Moderna in Covid-19 vaccines. Their synthetic capacity inspired us to develop a one-component multifunctional sequence-defined ionizable amphiphilic Janus dendrimer (IAJD) delivery system for mRNA. The first experiments on IAJDs provided, through a rational-library design combined with orthogonal-modular accelerated synthesis and sequence control in their hydrophilic part, some of the most active synthetic vectors for the delivery of mRNA to lung. The second experiments employed a similar strategy, generating, by a less complex hydrophilic structure, a library of IAJDs targeting spleen, liver, and lung. Here, we report preliminary studies designing the hydrophobic region of IAJDs by using dissimilar alkyl lengths and demonstrate the unexpectedly important role of the primary structure of the hydrophobic part of IAJDs by increasing up to 90.2-fold the activity of targeted delivery of mRNA to spleen, lymph nodes, liver, and lung. The principles of the design strategy reported here and in previous publications indicate that IAJDs could have a profound impact on the future of genetic nanomedicine.
病毒和合成载体通过帮助快速开发出高效的 COVID-19 疫苗,推动了核酸遗传纳米医学的发展。预计核酸靶向递送技术的应用将使纳米医学领域的发展超出大多数人的预期。病毒和合成载体都有各自的优缺点。合成载体的主要优势在于其具有无限的合成能力。四组分脂质纳米颗粒 (LNPs) 是辉瑞和 Moderna 在 COVID-19 疫苗中使用的领先的非病毒 mRNA 载体。它们的合成能力启发我们开发了一种用于 mRNA 的单组分多功能序列定义可离子化两亲性 Janus 树枝状大分子 (IAJD) 递药系统。IAJD 的初步实验通过合理文库设计与亲水部分的正交模块化加速合成和序列控制相结合,提供了一些用于向肺部递送 mRNA 的最有效的合成载体。第二项实验采用了类似的策略,通过更简单的亲水结构生成了针对脾脏、肝脏和肺部的 IAJD 文库。在此,我们报告了初步研究,通过使用不同的烷基长度来设计 IAJD 的疏水区域,并通过增加高达 90.2 倍来证明 IAJD 疏水部分的一级结构的意外重要性,从而实现靶向脾脏、淋巴结、肝脏和肺部的 mRNA 递药活性。这里报告的设计策略和之前出版物中的原则表明,IAJD 可能会对遗传纳米医学的未来产生深远影响。
J Am Chem Soc. 2021-11-3
Acc Chem Res. 2022-1-4
Acc Mater Res. 2022-5-27
Nat Rev Methods Primers. 2023
Biomolecules. 2025-3-1
MedComm (2020). 2025-1-2
Angew Chem Int Ed Engl. 2025-1-15