Suppr超能文献

MSENet:用于自动评估韩国牛肉大理石花纹评分的网络。

MSENet: Marbling score estimation network for automated assessment of Korean beef.

机构信息

Department of Bio-AI Convergence, Chungnam National University, Daejeon 305-764, Republic of Korea.

Department of Computer Science & Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea.

出版信息

Meat Sci. 2022 Jun;188:108784. doi: 10.1016/j.meatsci.2022.108784. Epub 2022 Mar 2.

Abstract

A novel beef marbling score estimation algorithm is proposed in this work. We develop a marbling score estimation network (MSENet), which simultaneously performs marbling score estimation and eye muscle area segmentation. The proposed MSENet includes a segmentation module, a bridge block, and a marbling scoring module. The segmentation module segments out eye muscle area from input images and the scoring module estimates marbling scores of input beef images. The proposed bridge block conveys the segmentation information for eye muscle area from the segmentation module to the scoring module. MSENet is trained on a new large-scale beef image dataset (more than 10,000), called the Hanwoo dataset. Experimental results demonstrate that the proposed MSENet achieves the reliable score estimation performance on the Hanwoo Dataset and the proposed bridge block effectively improves the estimation accuracy (Pearson's correlation coefficient: 0.952, Mean absolute error: 0.543).

摘要

本工作提出了一种新颖的牛肉大理石花纹评分估计算法。我们开发了一种大理石花纹评分估计算法网络(MSENet),它可以同时进行大理石花纹评分估计和眼肌面积分割。所提出的 MSENet 包括一个分割模块、一个桥接块和一个大理石花纹评分模块。分割模块从输入图像中分割出眼肌区域,评分模块估计输入牛肉图像的大理石花纹评分。所提出的桥接块将眼肌区域的分割信息从分割模块传递到评分模块。MSENet 在一个新的大型牛肉图像数据集(超过 10000 张)上进行训练,称为韩牛数据集。实验结果表明,所提出的 MSENet 在韩牛数据集上实现了可靠的评分估计性能,所提出的桥接块有效地提高了估计精度(皮尔逊相关系数:0.952,平均绝对误差:0.543)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验