Suppr超能文献

基于深度学习的猪胴体性状测定自动化方法

Deep Learning-Based Automated Approach for Determination of Pig Carcass Traits.

作者信息

Wei Jiacheng, Wu Yan, Tang Xi, Liu Jinxiu, Huang Yani, Wu Zhenfang, Li Xinyun, Zhang Zhiyan

机构信息

National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330045, China.

College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.

出版信息

Animals (Basel). 2024 Aug 21;14(16):2421. doi: 10.3390/ani14162421.

Abstract

Pig carcass traits are among the most economically significant characteristics and are crucial for genetic selection in breeding and enhancing the economic efficiency. Standardized and automated carcass phenotyping can greatly enhance the measurement efficiency and accuracy, thereby facilitating the selection and breeding of superior pig carcasses. In this study, we utilized phenotypic images and data from 3912 pigs to propose a deep learning-based approach for the automated determination of pig carcass phenotypic traits. Using the YOLOv8 algorithm, our carcass length determination model achieves an average accuracy of 99% on the test set. Additionally, our backfat segmentation model, YOLOV8n-seg, demonstrates robust segmentation performance, with a Mean IoU of 89.10. An analysis of the data distribution comparing manual and model-derived measurements revealed that differences in the carcass straight length are primarily concentrated between -2 cm and 4 cm, while differences in the carcass diagonal length are concentrated between -3 cm and 2 cm. To validate the method, we compared model measurements with manually obtained data, achieving coefficients of determination (R) of 0.9164 for the carcass straight length, 0.9325 for the carcass diagonal length, and 0.7137 for the backfat thickness, indicating high reliability. Our findings provide valuable insights into automating carcass phenotype determination and grading in pig production.

摘要

猪胴体性状是最重要的经济性状之一,对育种中的遗传选择和提高经济效率至关重要。标准化和自动化的胴体表型分析可以大大提高测量效率和准确性,从而促进优质猪胴体的选择和育种。在本研究中,我们利用3912头猪的表型图像和数据,提出了一种基于深度学习的方法来自动测定猪胴体表型性状。使用YOLOv8算法,我们的胴体长度测定模型在测试集上的平均准确率达到99%。此外,我们的背膘分割模型YOLOV8n-seg表现出强大的分割性能,平均交并比为89.10。对人工测量和模型测量数据分布的分析表明,胴体直长的差异主要集中在-2厘米至4厘米之间,而胴体对角线长度的差异集中在-3厘米至2厘米之间。为了验证该方法,我们将模型测量值与人工获取的数据进行了比较,胴体直长的决定系数(R)为0.9164,胴体对角线长度的决定系数为0.9325,背膘厚度的决定系数为0.7137,表明该方法具有很高的可靠性。我们的研究结果为猪生产中胴体表型测定和分级的自动化提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeb4/11350677/65480a145bf4/animals-14-02421-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验