Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Universidade de Ribeirão Preto, Ribeirão Preto, Brazil.
Am J Physiol Cell Physiol. 2022 Apr 1;322(4):C794-C801. doi: 10.1152/ajpcell.00031.2022. Epub 2022 Mar 9.
It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KD) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KD mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KD mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KD mice. Establishing a causal relationship between acetylcholine and NE, VAChT KD mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.
众所周知,胆碱能功能低下与心脏病理学有关,但涉及的机制仍不清楚。我们之前的研究表明,胆碱能缺陷的基因工程模型,即囊泡乙酰胆碱转运体敲低纯合子(VAChT KD)小鼠,表现出病理性心脏重构和随着年龄增长心脏质量逐渐增加。鉴于心脏质量的增加通常是由于肾上腺素能活性增加引起的,我们假设 VAChT KD 小鼠可能会增加心脏去甲肾上腺素(NE)水平。因此,我们研究了从 3、6 和 12 月龄 VAChT 突变体心脏中 NE 含量的时间变化。有趣的是,胆碱能功能低下的小鼠心脏 NE 含量逐渐升高,6 月龄时已经升高。与这一发现一致的是,6 月龄的 VAChT KD 小鼠表现出增强的交感神经活性和心脏中酪氨酸羟化酶阳性交感神经纤维的丰度增加。VAChT 突变体表现出钙瞬变峰值增加,以及心肌细胞中线粒体氧化应激增加,同时心脏中的 G 蛋白偶联受体激酶 5(GRK5)和激活 T 细胞的核因子(NFAT)染色增强。这些是细胞中肾上腺素能信号的已知靶标。此外,迷走神经切断的小鼠心脏 NE 含量增加,证实了 VAChT KD 小鼠获得的数据。在 VAChT KD 小鼠中建立乙酰胆碱和 NE 之间的因果关系,用胆碱酯酶抑制剂吡啶斯的明处理后,心脏 NE 含量降低,表型得到挽救。我们的研究结果揭示了胆碱能信号作为心脏 NE 调节剂的尚未被认识的作用,为驱动自主神经失衡的机制提供了新的见解。