Song Yan, Luo Wenjing, Xu Panfeng, Wei Jianwei, Qi Xiangbo
College of Physics, Liaoning University, Shenyang, 110000, China.
FieldIoT Co., Ltd, Shenyang, 110000, China.
Sci Rep. 2022 Mar 9;12(1):3861. doi: 10.1038/s41598-022-07125-3.
The Industrial Internet is the key for Industry 4.0, and network control in the industrial internet usually requires high reliability and low latency. The industrial internet ubiquitously connects all relevant Internet of things (IoT) sensing and actuating devices, allowing for monitoring and control of multiple industrial systems. Unfortunately, guaranteeing very low end-to-end wait times is particularly challenging because the transmissions must be articulated in time. In the industrial internet, there usually coexist multiple streams. The amount of data for controlling business flows is small, while other business flows (e.g., interactive business flows, sensing business flows) typically transmit large amounts of data across the network. These data flows are mainly processed in traditional switches using a queue-based "store-and-forward" mode for data exchange, consuming much bandwidth and filling up the network buffers. This causes delays in the control flow. In our research, we propose an Software Defined Networking (SDN) framework to reduce such delays and ensure real-time delivery of mixed service flows. The scheduling policy is performed through the northbound Application Programming Interface (API) of the SDN controller so that the dynamic network topology can be satisfied. We use the concept of edge and intermediate switches, where each switch port sends data at a specific time to avoid queuing intermediate switches. We also introduce an improved Langerian relaxation algorithm to select the best path to ensure low latency. Finally, the path rules are deployed to the switches in flow tables through the SDN controller. Our mathematical analysis and simulation evaluation demonstrates that the proposed scheme is more efficient.
工业互联网是工业4.0的关键,工业互联网中的网络控制通常需要高可靠性和低延迟。工业互联网普遍连接所有相关的物联网(IoT)传感和执行设备,从而实现对多个工业系统的监控。不幸的是,保证极低的端到端等待时间特别具有挑战性,因为传输必须及时协调。在工业互联网中,通常并存多个流。控制业务流的数据量小,而其他业务流(例如,交互式业务流、传感业务流)通常在网络中传输大量数据。这些数据流主要在传统交换机中使用基于队列的“存储转发”模式进行数据交换处理,消耗大量带宽并填满网络缓冲区。这导致控制流出现延迟。在我们的研究中,我们提出了一种软件定义网络(SDN)框架来减少此类延迟并确保混合服务流的实时交付。调度策略通过SDN控制器的北向应用程序编程接口(API)执行,以便能够满足动态网络拓扑。我们使用边缘交换机和中间交换机的概念,其中每个交换机端口在特定时间发送数据,以避免中间交换机排队。我们还引入了一种改进的拉格朗日松弛算法来选择最佳路径以确保低延迟。最后,路径规则通过SDN控制器部署到流表中的交换机。我们的数学分析和仿真评估表明,所提出的方案更有效。