Suppr超能文献

通过自反馈回路双向调节威尔逊-考恩模型中的伽马振荡:一项计算研究。

Bidirectionally Regulating Gamma Oscillations in Wilson-Cowan Model by Self-Feedback Loops: A Computational Study.

作者信息

Li XiuPing, Li ZhengHong, Yang WanMei, Wu Zhen, Wang JunSong

机构信息

School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.

Department of Psychology, Tianjin University of Technology and Education, Tianjin, China.

出版信息

Front Syst Neurosci. 2022 Feb 21;16:723237. doi: 10.3389/fnsys.2022.723237. eCollection 2022.

Abstract

The Wilson-Cowan model can emulate gamma oscillations, and thus is extensively used to research the generation of gamma oscillations closely related to cognitive functions. Previous studies have revealed that excitatory and inhibitory inputs to the model can modulate its gamma oscillations. Inhibitory and excitatory self-feedback loops are important structural features of the model, however, its functional role in the regulation of gamma oscillations in the model is still unclear. In the present study, bifurcation analysis and spectrum analysis are employed to elucidate the regulating mechanism of gamma oscillations underlined by the inhibitory and excitatory self-feedback loops, especially how the two self-feedback loops cooperate to generate the gamma oscillations and regulate the oscillation frequency. The present results reveal that, on one hand, the inhibitory self-feedback loop is not conducive to the generation of gamma oscillations, and increased inhibitory self-feedback strength facilitates the enhancement of the oscillation frequency. On the other hand, the excitatory self-feedback loop promotes the generation of gamma oscillations, and increased excitatory self-feedback strength leads to the decrease of oscillation frequency. Finally, theoretical analysis is conducted to provide explain on how the two self-feedback loops play a crucial role in the generation and regulation of neural oscillations in the model. To sum up, Inhibitory and excitatory self-feedback loops play a complementary role in generating and regulating the gamma oscillation in Wilson-Cowan model, and cooperate to bidirectionally regulate the gamma-oscillation frequency in a more flexible manner. These results might provide testable hypotheses for future experimental research.

摘要

威尔逊-考恩模型能够模拟伽马振荡,因此被广泛用于研究与认知功能密切相关的伽马振荡的产生。先前的研究表明,该模型的兴奋性和抑制性输入可以调节其伽马振荡。抑制性和兴奋性自反馈回路是该模型的重要结构特征,然而,其在模型中对伽马振荡调节的功能作用仍不清楚。在本研究中,采用分岔分析和频谱分析来阐明由抑制性和兴奋性自反馈回路所强调的伽马振荡的调节机制,特别是这两个自反馈回路如何协同作用以产生伽马振荡并调节振荡频率。目前的结果表明,一方面,抑制性自反馈回路不利于伽马振荡的产生,抑制性自反馈强度的增加有助于振荡频率的提高。另一方面,兴奋性自反馈回路促进伽马振荡的产生,兴奋性自反馈强度的增加导致振荡频率的降低。最后,进行理论分析以解释这两个自反馈回路如何在模型中神经振荡的产生和调节中发挥关键作用。综上所述,抑制性和兴奋性自反馈回路在威尔逊-考恩模型中伽马振荡的产生和调节中发挥着互补作用,并以更灵活的方式协同双向调节伽马振荡频率。这些结果可能为未来的实验研究提供可检验的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23a9/8900601/fcaef1fa9874/fnsys-16-723237-g001.jpg

相似文献

1
Bidirectionally Regulating Gamma Oscillations in Wilson-Cowan Model by Self-Feedback Loops: A Computational Study.
Front Syst Neurosci. 2022 Feb 21;16:723237. doi: 10.3389/fnsys.2022.723237. eCollection 2022.
2
Analysis of chaotic oscillations induced in two coupled Wilson-Cowan models.
Biol Cybern. 2014 Jun;108(3):355-63. doi: 10.1007/s00422-014-0604-8. Epub 2014 May 1.
4
Regulation of oscillation dynamics in biochemical systems with dual negative feedback loops.
J R Soc Interface. 2012 Aug 7;9(73):1998-2010. doi: 10.1098/rsif.2012.0028. Epub 2012 Mar 14.
5
Cooperation and competition of gamma oscillation mechanisms.
J Neurophysiol. 2016 Aug 1;116(2):232-51. doi: 10.1152/jn.00493.2015. Epub 2016 Feb 24.
6
Dependency analysis of frequency and strength of gamma oscillations on input difference between excitatory and inhibitory neurons.
Cogn Neurodyn. 2021 Jun;15(3):501-515. doi: 10.1007/s11571-020-09622-5. Epub 2020 Jul 28.
7
Synaptic Mechanisms of Tight Spike Synchrony at Gamma Frequency in Cerebral Cortex.
J Neurosci. 2015 Jul 15;35(28):10236-51. doi: 10.1523/JNEUROSCI.0828-15.2015.
9
Firing rate models for gamma oscillations.
J Neurophysiol. 2019 Jun 1;121(6):2181-2190. doi: 10.1152/jn.00741.2018. Epub 2019 Apr 3.
10
Hyperchaos in Wilson-Cowan oscillator circuits.
J Neurophysiol. 2019 Dec 1;122(6):2449-2457. doi: 10.1152/jn.00323.2019. Epub 2019 Oct 30.

引用本文的文献

2
Excitatory-inhibitory homeostasis and bifurcation control in the Wilson-Cowan model of cortical dynamics.
PLoS Comput Biol. 2025 Jan 6;21(1):e1012723. doi: 10.1371/journal.pcbi.1012723. eCollection 2025 Jan.
3
Criticality and partial synchronization analysis in Wilson-Cowan and Jansen-Rit neural mass models.
PLoS One. 2024 Jul 3;19(7):e0292910. doi: 10.1371/journal.pone.0292910. eCollection 2024.

本文引用的文献

1
Anti-control of periodic firing in HR model in the aspects of position, amplitude and frequency.
Cogn Neurodyn. 2021 Jun;15(3):533-545. doi: 10.1007/s11571-020-09627-0. Epub 2020 Aug 25.
2
Dependency analysis of frequency and strength of gamma oscillations on input difference between excitatory and inhibitory neurons.
Cogn Neurodyn. 2021 Jun;15(3):501-515. doi: 10.1007/s11571-020-09622-5. Epub 2020 Jul 28.
3
Firing rate models for gamma oscillations.
J Neurophysiol. 2019 Jun 1;121(6):2181-2190. doi: 10.1152/jn.00741.2018. Epub 2019 Apr 3.
4
Autapses enhance bursting and coincidence detection in neocortical pyramidal cells.
Nat Commun. 2018 Nov 20;9(1):4890. doi: 10.1038/s41467-018-07317-4.
5
Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations.
Neuron. 2017 Dec 20;96(6):1403-1418.e6. doi: 10.1016/j.neuron.2017.11.033.
6
Cortical gamma band synchronization through somatostatin interneurons.
Nat Neurosci. 2017 Jul;20(7):951-959. doi: 10.1038/nn.4562. Epub 2017 May 8.
7
Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex.
Neuron. 2017 Jan 18;93(2):315-322. doi: 10.1016/j.neuron.2016.12.028.
8
New Light on Gamma Oscillations.
Neuron. 2017 Jan 18;93(2):247-249. doi: 10.1016/j.neuron.2017.01.003.
9
Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.
J Math Neurosci. 2016 Dec;6(1):2. doi: 10.1186/s13408-015-0033-6. Epub 2016 Jan 6.
10
Periodic Forcing of Inhibition-Stabilized Networks: Nonlinear Resonances and Phase-Amplitude Coupling.
Neural Comput. 2015 Dec;27(12):2477-509. doi: 10.1162/NECO_a_00786. Epub 2015 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验