Suppr超能文献

通过生长抑素中间神经元实现皮质γ波段同步化。

Cortical gamma band synchronization through somatostatin interneurons.

作者信息

Veit Julia, Hakim Richard, Jadi Monika P, Sejnowski Terrence J, Adesnik Hillel

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.

Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA.

出版信息

Nat Neurosci. 2017 Jul;20(7):951-959. doi: 10.1038/nn.4562. Epub 2017 May 8.

Abstract

Gamma band rhythms may synchronize distributed cell assemblies to facilitate information transfer within and across brain areas, yet their underlying mechanisms remain hotly debated. Most circuit models postulate that soma-targeting parvalbumin-positive GABAergic neurons are the essential inhibitory neuron subtype necessary for gamma rhythms. Using cell-type-specific optogenetic manipulations in behaving animals, we show that dendrite-targeting somatostatin (SOM) interneurons are critical for a visually induced, context-dependent gamma rhythm in visual cortex. A computational model independently predicts that context-dependent gamma rhythms depend critically on SOM interneurons. Further in vivo experiments show that SOM neurons are required for long-distance coherence across the visual cortex. Taken together, these data establish an alternative mechanism for synchronizing distributed networks in visual cortex. By operating through dendritic and not just somatic inhibition, SOM-mediated oscillations may expand the computational power of gamma rhythms for optimizing the synthesis and storage of visual perceptions.

摘要

γ波段节律可能会使分布式细胞组件同步,以促进大脑区域内及区域间的信息传递,但其潜在机制仍备受争议。大多数电路模型假定,靶向胞体的小白蛋白阳性GABA能神经元是γ节律所必需的关键抑制性神经元亚型。我们在行为动物中使用细胞类型特异性光遗传学操作,结果表明,靶向树突的生长抑素(SOM)中间神经元对于视觉皮层中视觉诱导的、依赖于环境的γ节律至关重要。一个计算模型独立预测,依赖于环境的γ节律严重依赖于SOM中间神经元。进一步的体内实验表明,SOM神经元是视觉皮层远距离连贯性所必需的。综上所述,这些数据确立了视觉皮层中分布式网络同步的另一种机制。通过树突而非仅仅通过胞体抑制起作用,SOM介导的振荡可能会扩展γ节律的计算能力,以优化视觉感知的合成与存储。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7295/5511041/d1a9f1ae0a90/nihms869898f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验