Lin Ching-Che, Wang Shih-Ming, Chen Bo-Yi, Chi Cheng-Hung, Chang I-Ling, Chang Chih-Wei
Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan.
Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
Nano Lett. 2022 Apr 13;22(7):2667-2673. doi: 10.1021/acs.nanolett.1c04502. Epub 2022 Mar 10.
Recent developments in nanoscale thermal metrology using electron microscopy have made impressive advancements in measuring either phononic or thermal transport properties of nanoscale samples. However, its potential in material analysis has never been considered. Here we introduce a direct thermal absorbance measurement platform in scanning electron microscope (SEM) and demonstrate that its signal can be utilized for atomic number () analysis at nanoscales. We prove that the measured absorbance of materials is complementary to signals of backscattering electrons but exhibits a much higher collection efficiency and signal-to-noise ratio. Thus, it not only enables successful detections of light elements/compounds under low acceleration voltages of SEM but also allows quantitative analyses in agreement with simulations. The direct thermal absorbance measurement platform would become an ideal tool for SEM, especially for thin films, light elements/compounds, or biological samples at nanoscales.
利用电子显微镜进行的纳米级热计量学的最新进展,在测量纳米级样品的声子或热输运特性方面取得了令人瞩目的进步。然而,其在材料分析中的潜力从未被考虑过。在这里,我们介绍了一种扫描电子显微镜(SEM)中的直接热吸收率测量平台,并证明其信号可用于纳米尺度的原子序数()分析。我们证明,所测量的材料吸收率与背散射电子信号互补,但具有更高的收集效率和信噪比。因此,它不仅能够在扫描电子显微镜的低加速电压下成功检测轻元素/化合物,还能进行与模拟结果一致的定量分析。直接热吸收率测量平台将成为扫描电子显微镜的理想工具,特别是对于纳米尺度的薄膜、轻元素/化合物或生物样品。