Zelenka Jan, Pereverzev Aleksandr, Jahn Ullrich, Roithová Jana
Department of Spectroscopy and Catalysis, Institute for Molecules and Materials Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo náměstí 2, 16610, Prague 6, Czech Republic.
Chemistry. 2022 May 16;28(28):e202104493. doi: 10.1002/chem.202104493. Epub 2022 Apr 5.
Photocatalytic generation of nitrenes and radicals can be used to tune or even control their reactivity. Photocatalytic activation of sulfonyl azides leads to the elimination of N and the resulting reactive species initiate C-H activations and amide formation reactions. Here, we present reactive radicals that are generated from sulfonyl azides: sulfonyl nitrene radical anion, sulfonyl nitrene and sulfonyl amidyl radical, and test their gas phase reactivity in C-H activation reactions. The sulfonyl nitrene radical anion is the least reactive and its reactivity is governed by the proton coupled electron transfer mechanism. In contrast, sulfonyl nitrene and sulfonyl amidyl radicals react via hydrogen atom transfer pathways. These reactivities and detailed characterization of the radicals with vibrational spectroscopy and with DFT calculations provide information necessary for taking control over the reactivity of these intermediates.
光催化生成氮烯和自由基可用于调节甚至控制它们的反应活性。磺酰叠氮化物的光催化活化导致氮的消除,生成的活性物种引发C-H活化和酰胺形成反应。在此,我们展示了由磺酰叠氮化物产生的活性自由基:磺酰氮烯自由基阴离子、磺酰氮烯和磺酰脒基自由基,并测试了它们在C-H活化反应中的气相反应活性。磺酰氮烯自由基阴离子的反应活性最低,其反应活性受质子耦合电子转移机制支配。相比之下,磺酰氮烯和磺酰脒基自由基通过氢原子转移途径反应。这些反应活性以及通过振动光谱和密度泛函理论计算对自由基进行的详细表征提供了控制这些中间体反应活性所需的信息。