Kuijpers Petrus F, van der Vlugt Jarl Ivar, Schneider Sven, de Bruin Bas
Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands.
Institut für Anorganische Chemie, Universität Göttingen, Tammannstr. 4, 37077, Göttingen, Germany.
Chemistry. 2017 Oct 9;23(56):13819-13829. doi: 10.1002/chem.201702537. Epub 2017 Sep 14.
Nitrene radical complexes are reactive intermediates with discrete spin density at the nitrogen-atom of the nitrene moiety. These species have become important intermediates for organic synthesis, being invoked in a broad range of C-H functionalization and aziridination reactions. Nitrene radical complexes have intriguing electronic structures, and are best described as one-electron reduced Fischer type nitrenes. They can be generated by intramolecular single electron transfer to the "redox non-innocent" nitrene moiety at the metal. Nitrene radicals generated at open-shell cobalt(II) have thus far received most attention in terms of spectroscopic characterization, reactivity screening, catalytic nitrene-transfer reactions and (computational and experimental) mechanistic studies, but some interesting iron and precious metal catalysts have also been employed in related reactions involving nitrene radicals. In some cases, redox-active ligands are used to facilitate intramolecular single electron transfer from the complex to the nitrene moiety. Organic azides are among the most attractive nitrene precursors in this field, typically requiring pre-activated organic azides (e.g. RSO N , (RO) P(=O)N , ROC(=O)N and alike) to achieve efficient and selective catalysis. Challenging, non-activated aliphatic organic azides were recently added to the palette of reagents useful in synthetically relevant reactions proceeding via nitrene radical intermediates. This concept article describes the electronic structure of nitrene radical complexes, emphasizes on their usefulness in the catalytic synthesis of various organic products, and highlights the important developments in the field.
氮烯自由基配合物是在氮烯部分的氮原子上具有离散自旋密度的反应中间体。这些物种已成为有机合成的重要中间体,被广泛应用于各种C-H官能化和氮杂环丙烷化反应中。氮烯自由基配合物具有引人入胜的电子结构,最好将其描述为单电子还原的费舍尔型氮烯。它们可以通过分子内单电子转移到金属上的“氧化还原非惰性”氮烯部分而产生。到目前为止,在开壳钴(II)上产生的氮烯自由基在光谱表征、反应性筛选、催化氮烯转移反应以及(计算和实验)机理研究方面受到了最多的关注,但一些有趣的铁和贵金属催化剂也已用于涉及氮烯自由基的相关反应中。在某些情况下,氧化还原活性配体用于促进从配合物到氮烯部分的分子内单电子转移。有机叠氮化物是该领域最具吸引力的氮烯前体之一,通常需要预活化的有机叠氮化物(例如RSO₂N₃、(RO)₂P(=O)N₃、ROC(=O)N₃等)以实现高效和选择性催化。具有挑战性的非活化脂肪族有机叠氮化物最近被添加到通过氮烯自由基中间体进行的合成相关反应中有用的试剂库中。这篇概念文章描述了氮烯自由基配合物的电子结构,强调了它们在各种有机产物催化合成中的有用性,并突出了该领域的重要进展。