Goswami Monalisa, Lyaskovskyy Volodymyr, Domingos Sérgio R, Buma Wybren Jan, Woutersen Sander, Troeppner Oliver, Ivanović-Burmazović Ivana, Lu Hongjian, Cui Xin, Zhang X Peter, Reijerse Edward J, DeBeer Serena, van Schooneveld Matti M, Pfaff Florian Felix, Ray Kallol, de Bruin Bas
§Lehrstuhl für Bioanorganische Chemie, Department Chemie und Pharmazie, Universität Erlangen-Nürnberg. Egerlandstraße 1, D-91058 Erlangen, Germany.
⊥Department of Chemistry, University of South Florida, Tampa, Florida 33620-5250, United States.
J Am Chem Soc. 2015 Apr 29;137(16):5468-79. doi: 10.1021/jacs.5b01197. Epub 2015 Apr 16.
To fully characterize the Co(III)-'nitrene radical' species that are proposed as intermediates in nitrene transfer reactions mediated by cobalt(II) porphyrins, different combinations of cobalt(II) complexes of porphyrins and nitrene transfer reagents were combined, and the generated species were studied using EPR, UV-vis, IR, VCD, UHR-ESI-MS, and XANES/XAFS measurements. Reactions of cobalt(II) porphyrins 1(P1) (P1 = meso-tetraphenylporphyrin (TPP)) and 1(P2) (P2 = 3,5-Di(t)Bu-ChenPhyrin) with organic azides 2(Ns) (NsN3), 2(Ts) (TsN3), and 2(Troc) (TrocN3) led to the formation of mono-nitrene species 3(P1)(Ns), 3(P2)(Ts), and 3(P2)(Troc), respectively, which are best described as [Co(III)(por)(NR″(•-))] nitrene radicals (imidyl radicals) resulting from single electron transfer from the cobalt(II) porphyrin to the 'nitrene' moiety (Ns: R″ = -SO2-p-C6H5NO2; Ts: R″ = -SO2C6H6; Troc: R″ = -C(O)OCH2CCl3). Remarkably, the reaction of 1(P1) with N-nosyl iminoiodane (PhI═NNs) 4(Ns) led to the formation of a bis-nitrene species 5(P1)(Ns). This species is best described as a triple-radical complex [(por(•-))Co(III)(NR″(•-))2] containing three ligand-centered unpaired electrons: two nitrene radicals (NR″(•-)) and one oxidized porphyrin radical (por(•-)). Thus, the formation of the second nitrene radical involves another intramolecular one-electron transfer to the "nitrene" moiety, but now from the porphyrin ring instead of the metal center. Interestingly, this bis-nitrene species is observed only on reacting 4(Ns) with 1(P1). Reaction of the more bulky 1(P2) with 4(Ns) results again in formation of mainly mono-nitrene species 3(P2)(Ns) according to EPR and ESI-MS spectroscopic studies. The mono- and bis-nitrene species were initially expected to be five- and six-coordinate species, respectively, but XANES data revealed that both mono- and bis-nitrene species are six-coordinate O(h) species. The nature of the sixth ligand bound to cobalt(III) in the mono-nitrene case remains elusive, but some plausible candidates are NH3, NH2(-), NsNH(-), and OH(-); NsNH(-) being the most plausible. Conversion of mono-nitrene species 3(P1)(Ns) into bis-nitrene species 5(P1)(Ns) upon reaction with 4(Ns) was demonstrated. Solutions containing 3(P1)(Ns) and 5(P1)(Ns) proved to be still active in catalytic aziridination of styrene, consistent with their proposed key involvement in nitrene transfer reactions mediated by cobalt(II) porphyrins.
为了全面表征被认为是钴(II)卟啉介导的氮烯转移反应中间体的Co(III)-“氮烯自由基”物种,将卟啉的钴(II)配合物与氮烯转移试剂的不同组合进行混合,并使用电子顺磁共振(EPR)、紫外可见光谱(UV-vis)、红外光谱(IR)、振动圆二色光谱(VCD)、超高压电喷雾电离质谱(UHR-ESI-MS)以及X射线吸收近边结构光谱(XANES)/扩展X射线吸收精细结构光谱(XAFS)测量对生成的物种进行研究。钴(II)卟啉1(P1)(P1 = 中-四苯基卟啉(TPP))和1(P2)(P2 = 3,5-二(叔)丁基-陈卟啉)与有机叠氮化物2(Ns)(NsN3)、2(Ts)(TsN3)和2(Troc)(TrocN3)反应,分别生成单氮烯物种3(P1)(Ns)、3(P2)(Ts)和3(P2)(Troc),它们最好被描述为由钴(II)卟啉向“氮烯”部分单电子转移产生的[Co(III)(卟啉)(NR″(•-))]氮烯自由基(亚胺基自由基)(Ns:R″ = -SO2-p-C6H5NO2;Ts:R″ = -SO2C6H6;Troc:R″ = -C(O)OCH2CCl3)。值得注意的是,1(P1)与N-硝酰基亚碘酰苯(PhI═NNs)4(Ns)反应生成双氮烯物种5(P1)(Ns)。该物种最好被描述为一种三自由基配合物[(卟啉(•-))Co(III)(NR″(•-))2],含有三个以配体为中心的未成对电子:两个氮烯自由基(NR″(•-))和一个氧化的卟啉自由基(卟啉(•-))。因此,第二个氮烯自由基的形成涉及另一次分子内单电子转移至“氮烯”部分,但这次是从卟啉环而非金属中心转移。有趣的是,仅在4(Ns)与1(P1)反应时才观察到这种双氮烯物种。根据EPR和ESI-MS光谱研究,体积更大的1(P2)与4(Ns)反应再次主要生成单氮烯物种3(P2)(Ns)。最初预计单氮烯和双氮烯物种分别为五配位和六配位物种,但XANES数据表明单氮烯和双氮烯物种均为六配位O(h)物种。在单氮烯情况下与钴(III)配位的第六个配体的性质仍然难以捉摸,但一些合理的候选者是NH3、NH2(-)、NsNH(-)和OH(-);NsNH(-)是最合理