Suppr超能文献

KAT7介导的CANX(钙连蛋白)巴豆酰化调节亮氨酸刺激的MTORC1活性。

KAT7-mediated CANX (calnexin) crotonylation regulates leucine-stimulated MTORC1 activity.

作者信息

Yan Guokai, Li Xiuzhi, Zheng Zilong, Gao Weihua, Chen Changqing, Wang Xinkai, Cheng Zhongyi, Yu Jie, Zou Geng, Farooq Muhammad Zahid, Zhu Xiaoyan, Zhu Weiyun, Zhong Qing, Yan Xianghua

机构信息

State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.

The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.

出版信息

Autophagy. 2022 Dec;18(12):2799-2816. doi: 10.1080/15548627.2022.2047481. Epub 2022 Mar 10.

Abstract

Amino acids play crucial roles in the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) pathway. However, the underlying mechanisms are not fully understood. Here, we establish a cell-free system to mimic the activation of MTORC1, by which we identify CANX (calnexin) as an essential regulator for leucine-stimulated MTORC1 pathway. CANX translocates to lysosomes after leucine deprivation, and its loss of function renders either the MTORC1 activity or the lysosomal translocation of MTOR insensitive to leucine deprivation. We further find that CANX binds to LAMP2 (lysosomal associated membrane protein 2), and LAMP2 is required for leucine deprivation-induced CANX interaction with the Ragulator to inhibit Ragulator activity toward RRAG GTPases. Moreover, leucine deprivation promotes the lysine (K) 525 crotonylation of CANX, which is another essential condition for the lysosomal translocation of CANX. Finally, we find that KAT7 (lysine acetyltransferase 7) mediates the K525 crotonylation of CANX. Loss of KAT7 renders the MTORC1 insensitivity to leucine deprivation. Our findings provide new insights for the regulatory mechanism of the leucine-stimulated MTORC1 pathway. CALR: calreticulin; CANX: calnexin; CLF: crude lysosome fraction; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; GST: glutathione S-transferase; HA: hemagglutinin; HEK293T: human embryonic kidney-293T; KAT7: lysine acetyltransferase 7; Kcr; lysine crotonylation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAMTOR/Ragulator: late endosomal/lysosomal adaptor: MAPK and MTOR activator; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PTM: post-translational modification; RPS6KB1/p70S6 kinase 1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; SESN2: sestrin 2; TMEM192: transmembrane protein 192; ULK1: unc-51 like autophagy activating kinase 1.

摘要

氨基酸在雷帕霉素激酶机制性靶点(MTOR)复合物1(MTORC1)通路中发挥着关键作用。然而,其潜在机制尚未完全明确。在此,我们建立了一个无细胞系统来模拟MTORC1的激活,借此我们鉴定出钙联蛋白(CANX)是亮氨酸刺激的MTORC1通路的关键调节因子。亮氨酸缺乏后,CANX转位至溶酶体,其功能丧失会使MTORC1活性或MTOR的溶酶体转位对亮氨酸缺乏不敏感。我们进一步发现,CANX与溶酶体相关膜蛋白2(LAMP2)结合,且亮氨酸缺乏诱导的CANX与Ragulator相互作用以抑制Ragulator对RRAG GTP酶的活性需要LAMP2。此外,亮氨酸缺乏会促进CANX赖氨酸(K)525巴豆酰化,这是CANX溶酶体转位的另一个必要条件。最后,我们发现赖氨酸乙酰转移酶7(KAT7)介导CANX的K525巴豆酰化。KAT7缺失会使MTORC1对亮氨酸缺乏不敏感。我们的研究结果为亮氨酸刺激的MTORC1通路的调节机制提供了新的见解。钙网蛋白(CALR);钙联蛋白(CANX);粗溶酶体组分(CLF);真核翻译起始因子4E结合蛋白1(EIF4EBP1);内质网(ER);谷胱甘肽S-转移酶(GST);血凝素(HA);人胚肾293T细胞(HEK293T);赖氨酸乙酰转移酶7(KAT7);赖氨酸巴豆酰化(Kcr);基因敲除(KO);溶酶体相关膜蛋白2(LAMP2);晚期内体/溶酶体衔接蛋白:MAPK和MTOR激活剂(LAMTOR/Ragulator);微管相关蛋白1轻链3β(MAP1LC3B);雷帕霉素激酶机制性靶点(MTOR);蛋白二硫键异构酶(PDI);翻译后修饰(PTM);核糖体蛋白S6激酶B1(RPS6KB1/p70S6激酶1);MTOR复合物1的调节相关蛋白(RPTOR); sestrin 2(SESN2);跨膜蛋白192(TMEM192);unc-51样自噬激活激酶1(ULK1)

相似文献

1
KAT7-mediated CANX (calnexin) crotonylation regulates leucine-stimulated MTORC1 activity.
Autophagy. 2022 Dec;18(12):2799-2816. doi: 10.1080/15548627.2022.2047481. Epub 2022 Mar 10.
2
TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis.
Autophagy. 2018;14(9):1574-1585. doi: 10.1080/15548627.2018.1463120. Epub 2018 Aug 21.
3
Direct regulation of FNIP1 and FNIP2 by MEF2 sustains MTORC1 activation and tumor progression in pancreatic cancer.
Autophagy. 2024 Mar;20(3):505-524. doi: 10.1080/15548627.2023.2259735. Epub 2023 Sep 29.
4
DRD3 (dopamine receptor D3) but not DRD2 activates autophagy through MTORC1 inhibition preserving protein synthesis.
Autophagy. 2020 Jul;16(7):1279-1295. doi: 10.1080/15548627.2019.1668606. Epub 2019 Oct 2.
5
MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress.
Autophagy. 2019 Mar;15(3):375-390. doi: 10.1080/15548627.2018.1531197. Epub 2018 Oct 16.
7
TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy.
Autophagy. 2019 Jan;15(1):151-164. doi: 10.1080/15548627.2018.1511504. Epub 2018 Sep 10.
8
Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy.
Autophagy. 2022 Apr;18(4):860-876. doi: 10.1080/15548627.2021.1961072. Epub 2021 Aug 12.
10
MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint.
Autophagy. 2020 Feb;16(2):271-288. doi: 10.1080/15548627.2019.1606647. Epub 2019 Apr 21.

引用本文的文献

1
The function and mechanism of protein acylation in the regulation of viral infection.
Virulence. 2025 Dec;16(1):2530171. doi: 10.1080/21505594.2025.2530171. Epub 2025 Jul 17.
3
Acyl post-translational modification of proteins by metabolites in cancer cells.
Cell Death Discov. 2025 May 21;11(1):247. doi: 10.1038/s41420-025-02535-4.
4
Post-translational acylation of proteins in cardiac hypertrophy.
Nat Rev Cardiol. 2025 Apr 14. doi: 10.1038/s41569-025-01150-1.
5
Lysine crotonylation in disease: mechanisms, biological functions and therapeutic targets.
Epigenetics Chromatin. 2025 Mar 22;18(1):13. doi: 10.1186/s13072-025-00577-7.
6
The dual role of calnexin on malignant progression and tumor microenvironment in glioma.
Sci Rep. 2024 Dec 28;14(1):30796. doi: 10.1038/s41598-024-81192-6.
7
Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer.
Cells. 2024 Nov 2;13(21):1812. doi: 10.3390/cells13211812.
8
Protein lysine crotonylation in cellular processions and disease associations.
Genes Dis. 2023 Aug 2;11(5):101060. doi: 10.1016/j.gendis.2023.06.029. eCollection 2024 Sep.
9
Protein crotonylation: Basic research and clinical diseases.
Biochem Biophys Rep. 2024 Mar 29;38:101694. doi: 10.1016/j.bbrep.2024.101694. eCollection 2024 Jul.
10
Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing.
Nat Cell Biol. 2023 May;25(5):754-764. doi: 10.1038/s41556-023-01123-x. Epub 2023 Apr 10.

本文引用的文献

1
ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C.
Nat Cell Biol. 2019 Oct;21(10):1206-1218. doi: 10.1038/s41556-019-0391-5. Epub 2019 Sep 23.
2
Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK.
Cell Metab. 2019 Sep 3;30(3):508-524.e12. doi: 10.1016/j.cmet.2019.05.018. Epub 2019 Jun 13.
3
Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales.
Cell. 2018 Nov 15;175(5):1430-1442.e17. doi: 10.1016/j.cell.2018.09.057. Epub 2018 Oct 25.
4
Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A.
Cell Metab. 2019 Jan 8;29(1):192-201.e7. doi: 10.1016/j.cmet.2018.08.013. Epub 2018 Sep 6.
5
NUFIP1 is a ribosome receptor for starvation-induced ribophagy.
Science. 2018 May 18;360(6390):751-758. doi: 10.1126/science.aar2663. Epub 2018 Apr 26.
6
EGFR-Phosphorylated Platelet Isoform of Phosphofructokinase 1 Promotes PI3K Activation.
Mol Cell. 2018 Apr 19;70(2):197-210.e7. doi: 10.1016/j.molcel.2018.03.018.
7
Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.
Science. 2017 Nov 10;358(6364):807-813. doi: 10.1126/science.aan6298. Epub 2017 Oct 26.
8
Ultradeep Lysine Crotonylome Reveals the Crotonylation Enhancement on Both Histones and Nonhistone Proteins by SAHA Treatment.
J Proteome Res. 2017 Oct 6;16(10):3664-3671. doi: 10.1021/acs.jproteome.7b00380. Epub 2017 Sep 19.
9
Chromodomain Protein CDYL Acts as a Crotonyl-CoA Hydratase to Regulate Histone Crotonylation and Spermatogenesis.
Mol Cell. 2017 Sep 7;67(5):853-866.e5. doi: 10.1016/j.molcel.2017.07.011. Epub 2017 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验