Yan Guokai, Li Xiuzhi, Zheng Zilong, Gao Weihua, Chen Changqing, Wang Xinkai, Cheng Zhongyi, Yu Jie, Zou Geng, Farooq Muhammad Zahid, Zhu Xiaoyan, Zhu Weiyun, Zhong Qing, Yan Xianghua
State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.
Autophagy. 2022 Dec;18(12):2799-2816. doi: 10.1080/15548627.2022.2047481. Epub 2022 Mar 10.
Amino acids play crucial roles in the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) pathway. However, the underlying mechanisms are not fully understood. Here, we establish a cell-free system to mimic the activation of MTORC1, by which we identify CANX (calnexin) as an essential regulator for leucine-stimulated MTORC1 pathway. CANX translocates to lysosomes after leucine deprivation, and its loss of function renders either the MTORC1 activity or the lysosomal translocation of MTOR insensitive to leucine deprivation. We further find that CANX binds to LAMP2 (lysosomal associated membrane protein 2), and LAMP2 is required for leucine deprivation-induced CANX interaction with the Ragulator to inhibit Ragulator activity toward RRAG GTPases. Moreover, leucine deprivation promotes the lysine (K) 525 crotonylation of CANX, which is another essential condition for the lysosomal translocation of CANX. Finally, we find that KAT7 (lysine acetyltransferase 7) mediates the K525 crotonylation of CANX. Loss of KAT7 renders the MTORC1 insensitivity to leucine deprivation. Our findings provide new insights for the regulatory mechanism of the leucine-stimulated MTORC1 pathway. CALR: calreticulin; CANX: calnexin; CLF: crude lysosome fraction; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; GST: glutathione S-transferase; HA: hemagglutinin; HEK293T: human embryonic kidney-293T; KAT7: lysine acetyltransferase 7; Kcr; lysine crotonylation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAMTOR/Ragulator: late endosomal/lysosomal adaptor: MAPK and MTOR activator; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PTM: post-translational modification; RPS6KB1/p70S6 kinase 1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; SESN2: sestrin 2; TMEM192: transmembrane protein 192; ULK1: unc-51 like autophagy activating kinase 1.
氨基酸在雷帕霉素激酶机制性靶点(MTOR)复合物1(MTORC1)通路中发挥着关键作用。然而,其潜在机制尚未完全明确。在此,我们建立了一个无细胞系统来模拟MTORC1的激活,借此我们鉴定出钙联蛋白(CANX)是亮氨酸刺激的MTORC1通路的关键调节因子。亮氨酸缺乏后,CANX转位至溶酶体,其功能丧失会使MTORC1活性或MTOR的溶酶体转位对亮氨酸缺乏不敏感。我们进一步发现,CANX与溶酶体相关膜蛋白2(LAMP2)结合,且亮氨酸缺乏诱导的CANX与Ragulator相互作用以抑制Ragulator对RRAG GTP酶的活性需要LAMP2。此外,亮氨酸缺乏会促进CANX赖氨酸(K)525巴豆酰化,这是CANX溶酶体转位的另一个必要条件。最后,我们发现赖氨酸乙酰转移酶7(KAT7)介导CANX的K525巴豆酰化。KAT7缺失会使MTORC1对亮氨酸缺乏不敏感。我们的研究结果为亮氨酸刺激的MTORC1通路的调节机制提供了新的见解。钙网蛋白(CALR);钙联蛋白(CANX);粗溶酶体组分(CLF);真核翻译起始因子4E结合蛋白1(EIF4EBP1);内质网(ER);谷胱甘肽S-转移酶(GST);血凝素(HA);人胚肾293T细胞(HEK293T);赖氨酸乙酰转移酶7(KAT7);赖氨酸巴豆酰化(Kcr);基因敲除(KO);溶酶体相关膜蛋白2(LAMP2);晚期内体/溶酶体衔接蛋白:MAPK和MTOR激活剂(LAMTOR/Ragulator);微管相关蛋白1轻链3β(MAP1LC3B);雷帕霉素激酶机制性靶点(MTOR);蛋白二硫键异构酶(PDI);翻译后修饰(PTM);核糖体蛋白S6激酶B1(RPS6KB1/p70S6激酶1);MTOR复合物1的调节相关蛋白(RPTOR); sestrin 2(SESN2);跨膜蛋白192(TMEM192);unc-51样自噬激活激酶1(ULK1)