Suppr超能文献

溶酶体代谢组学揭示了V-ATP酶和mTOR对溶酶体氨基酸外流的依赖性调节。

Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.

作者信息

Abu-Remaileh Monther, Wyant Gregory A, Kim Choah, Laqtom Nouf N, Abbasi Maria, Chan Sze Ham, Freinkman Elizaveta, Sabatini David M

机构信息

Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA.

Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Science. 2017 Nov 10;358(6364):807-813. doi: 10.1126/science.aan6298. Epub 2017 Oct 26.

Abstract

The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H-adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux.

摘要

溶酶体可降解并回收大分子物质,向细胞质和细胞核发出信号,且与多种疾病相关。在此,我们描述了一种快速分离哺乳动物溶酶体的方法,并利用该方法对各种细胞状态下的溶酶体代谢物进行定量分析。在营养充足的条件下,许多溶酶体氨基酸与细胞质中的氨基酸快速交换。通过抑制液泡H⁺ - 腺苷三磷酸酶(V-ATPase)导致溶酶体酸化丧失,增加了大多数代谢物的腔浓度,但对大多数必需氨基酸的浓度没有影响。相反,营养饥饿调节这些氨基酸的溶酶体浓度,我们将这种效应追溯到雷帕霉素机制靶点(mTOR)途径的调节。抑制mTOR强烈降低了大多数必需氨基酸的溶酶体流出,使溶酶体成为它们的细胞储存库。这些结果揭示了溶酶体代谢物的动态性质,以及存在V-ATPase和mTOR依赖性机制来控制溶酶体氨基酸流出。

相似文献

1
Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes.
Science. 2017 Nov 10;358(6364):807-813. doi: 10.1126/science.aan6298. Epub 2017 Oct 26.
2
Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly.
J Biol Chem. 2015 Nov 6;290(45):27360-27369. doi: 10.1074/jbc.M115.659128. Epub 2015 Sep 16.
3
TMEM55B contributes to lysosomal homeostasis and amino acid-induced mTORC1 activation.
Genes Cells. 2018 Jun;23(6):418-434. doi: 10.1111/gtc.12583. Epub 2018 Apr 27.
4
Direct control of lysosomal catabolic activity by mTORC1 through regulation of V-ATPase assembly.
Nat Commun. 2022 Aug 17;13(1):4848. doi: 10.1038/s41467-022-32515-6.
6
Activity-independent targeting of mTOR to lysosomes in primary osteoclasts.
Sci Rep. 2017 Jun 7;7(1):3005. doi: 10.1038/s41598-017-03494-2.
7
AKT Ser/Thr kinase increases V-ATPase-dependent lysosomal acidification in response to amino acid starvation in mammalian cells.
J Biol Chem. 2020 Jul 10;295(28):9433-9444. doi: 10.1074/jbc.RA120.013223. Epub 2020 May 14.
8
Dynamics of mTORC1 activation in response to amino acids.
Elife. 2016 Oct 11;5:e19960. doi: 10.7554/eLife.19960.
10
Disruption of the vacuolar-type H-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes.
Autophagy. 2017 Apr 3;13(4):670-685. doi: 10.1080/15548627.2017.1280216. Epub 2017 Jan 27.

引用本文的文献

1
CHIP protects lysosomes from CLN4 mutant-induced membrane damage.
Nat Cell Biol. 2025 Aug 25. doi: 10.1038/s41556-025-01738-2.
3
LRRK2 kinase activity regulates Parkinson's disease-relevant lipids at the lysosome.
Mol Neurodegener. 2025 Aug 6;20(1):89. doi: 10.1186/s13024-025-00880-7.
5
Craniomaxillofacial-Derived MSCs in Congenital Defect Reconstruction.
Biomolecules. 2025 Jun 30;15(7):953. doi: 10.3390/biom15070953.
6
Flower dependent trafficking of lamellar bodies facilitates maturation of the epidermal barrier.
Nat Commun. 2025 Jul 26;16(1):6892. doi: 10.1038/s41467-025-62105-1.
7
The dual role of mTOR signaling in lung development and adult lung diseases.
Cell Biosci. 2025 Jul 17;15(1):103. doi: 10.1186/s13578-025-01428-4.
9
JIP4 deficiency causes a lysosomal storage disease arising from impaired cystine efflux.
bioRxiv. 2025 Jun 8:2025.06.06.657909. doi: 10.1101/2025.06.06.657909.

本文引用的文献

1
Critical Functions of the Lysosome in Cancer Biology.
Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:481-507. doi: 10.1146/annurev-pharmtox-010715-103101. Epub 2016 Oct 12.
2
Recent insights into the function of autophagy in cancer.
Genes Dev. 2016 Sep 1;30(17):1913-30. doi: 10.1101/gad.287524.116.
3
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2016 Sep 7;55:14.10.1-14.10.91. doi: 10.1002/cpbi.11.
4
Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism.
Cell. 2016 Aug 25;166(5):1324-1337.e11. doi: 10.1016/j.cell.2016.07.040.
5
Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR.
Autophagy. 2016 Oct 2;12(10):1967-1970. doi: 10.1080/15548627.2016.1205770. Epub 2016 Jul 26.
6
mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy.
Proc Natl Acad Sci U S A. 2015 Dec 29;112(52):15790-7. doi: 10.1073/pnas.1521919112. Epub 2015 Dec 15.
7
Sestrin2 is a leucine sensor for the mTORC1 pathway.
Science. 2016 Jan 1;351(6268):43-8. doi: 10.1126/science.aab2674. Epub 2015 Oct 8.
8
Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9.
Mol Cell Biol. 2015 Jul;35(14):2479-94. doi: 10.1128/MCB.00125-15. Epub 2015 May 11.
9
Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.
Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.
10
SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.
Nature. 2015 Mar 26;519(7544):477-81. doi: 10.1038/nature14107. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验