Suppr超能文献

潜在循环死亡后供体的死亡时间的前瞻性多中心观察性队列研究-预测模型的制定和外部验证:DCD III 研究。

Prospective Multicenter Observational Cohort Study on Time to Death in Potential Controlled Donation After Circulatory Death Donors-Development and External Validation of Prediction Models: The DCD III Study.

机构信息

Department of Intensive Care, Elisabeth TweeSteden Hospital, Tilburg, The Netherlands.

Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

出版信息

Transplantation. 2022 Sep 1;106(9):1844-1851. doi: 10.1097/TP.0000000000004106. Epub 2022 Mar 8.

Abstract

BACKGROUND

Acceptance of organs from controlled donation after circulatory death (cDCD) donors depends on the time to circulatory death. Here we aimed to develop and externally validate prediction models for circulatory death within 1 or 2 h after withdrawal of life-sustaining treatment.

METHODS

In a multicenter, observational, prospective cohort study, we enrolled 409 potential cDCD donors. For model development, we applied the least absolute shrinkage and selection operator (LASSO) regression and machine learning-artificial intelligence analyses. Our LASSO models were validated using a previously published cDCD cohort. Additionally, we validated 3 existing prediction models using our data set.

RESULTS

For death within 1 and 2 h, the area under the curves (AUCs) of the LASSO models were 0.77 and 0.79, respectively, whereas for the artificial intelligence models, these were 0.79 and 0.81, respectively. We were able to identify 4% to 16% of the patients who would not die within these time frames with 100% accuracy. External validation showed that the discrimination of our models was good (AUCs 0.80 and 0.82, respectively), but they were not able to identify a subgroup with certain death after 1 to 2 h. Using our cohort to validate 3 previously published models showed AUCs ranging between 0.63 and 0.74. Calibration demonstrated that the models over- and underestimated the predicted probability of death.

CONCLUSIONS

Our models showed a reasonable ability to predict circulatory death. External validation of our and 3 existing models illustrated that their predictive ability remained relatively stable. We accurately predicted a subset of patients who died after 1 to 2 h, preventing starting unnecessary donation preparations, which, however, need external validation in a prospective cohort.

摘要

背景

接受循环死亡(cDCD)供体的器官需要取决于从维持生命治疗中撤回后循环死亡的时间。在此,我们旨在开发并外部验证在停止维持生命治疗后 1 或 2 小时内发生循环死亡的预测模型。

方法

在一项多中心、观察性、前瞻性队列研究中,我们招募了 409 名潜在的 cDCD 供体。为了进行模型开发,我们应用了最小绝对收缩和选择算子(LASSO)回归和机器学习人工智能分析。我们的 LASSO 模型使用以前发表的 cDCD 队列进行了验证。此外,我们还使用我们的数据集验证了 3 个现有的预测模型。

结果

对于死亡在 1 小时和 2 小时内,LASSO 模型的曲线下面积(AUC)分别为 0.77 和 0.79,而对于人工智能模型,这些分别为 0.79 和 0.81。我们能够以 100%的准确率识别出 4%至 16%的患者在这些时间范围内不会死亡。外部验证表明,我们的模型具有良好的判别能力(AUC 分别为 0.80 和 0.82),但无法确定在 1 至 2 小时后确定死亡的亚组。使用我们的队列来验证 3 个先前发表的模型显示 AUC 范围在 0.63 至 0.74 之间。校准表明,这些模型高估和低估了死亡预测概率。

结论

我们的模型显示出合理的预测循环死亡的能力。对我们和 3 个现有模型的外部验证表明,它们的预测能力仍然相对稳定。我们准确地预测了在 1 至 2 小时后死亡的患者子集,从而避免了不必要的捐赠准备,然而,这需要在前瞻性队列中进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验