Suppr超能文献

卤化物-水团簇的密度泛函理论方法和数据驱动模型的基准协议。

A Benchmark Protocol for DFT Approaches and Data-Driven Models for Halide-Water Clusters.

机构信息

Institute of Fundamental Physics (IFF-CSIC), Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain.

Atelgraphics S.L., Mota de Cuervo 42, 28043 Madrid, Spain.

出版信息

Molecules. 2022 Mar 2;27(5):1654. doi: 10.3390/molecules27051654.

Abstract

Dissolved ions in aqueous media are ubiquitous in many physicochemical processes, with a direct impact on research fields, such as chemistry, climate, biology, and industry. Ions play a crucial role in the structure of the surrounding network of water molecules as they can either weaken or strengthen it. Gaining a thorough understanding of the underlying forces from small clusters to bulk solutions is still challenging, which motivates further investigations. Through a systematic analysis of the interaction energies obtained from high-level electronic structure methodologies, we assessed various dispersion-corrected density functional approaches, as well as ab initio-based data-driven potential models for halide ion-water clusters. We introduced an active learning scheme to automate the generation of optimally weighted datasets, required for the development of efficient bottom-up anion-water models. Using an evolutionary programming procedure, we determined optimized and reference configurations for such polarizable and first-principles-based representation of the potentials, and we analyzed their structural characteristics and energetics in comparison with estimates from DF-MP2 and DFT+D quantum chemistry computations. Moreover, we presented new benchmark datasets, considering both equilibrium and non-equilibrium configurations of higher-order species with an increasing number of water molecules up to 54 for each F, Cl, Br, and I anions, and we proposed a validation protocol to cross-check methods and approaches. In this way, we aim to improve the predictive ability of future molecular computer simulations for determining the ongoing conflicting distribution of different ions in aqueous environments, as well as the transition from nanoscale clusters to macroscopic condensed phases.

摘要

在许多物理化学过程中,水介质中的溶解离子无处不在,直接影响到化学、气候、生物和工业等研究领域。离子在周围水分子网络的结构中起着至关重要的作用,因为它们可以削弱或增强网络。从小分子簇到体相溶液,深入了解潜在的相互作用力仍然具有挑战性,这促使我们进行进一步的研究。通过对从高级电子结构方法获得的相互作用能进行系统分析,我们评估了各种色散校正密度泛函方法,以及卤化物离子-水团簇的基于从头算的数据驱动势能模型。我们引入了一种主动学习方案,以自动生成用于开发高效阴离子-水从头算模型所需的最优加权数据集。使用进化编程程序,我们确定了用于这种极化和基于第一性原理的势能的优化和参考构型,并分析了它们的结构特征和与 DF-MP2 和 DFT+D 量子化学计算的估计值相比的能量。此外,我们提出了新的基准数据集,考虑了具有越来越多水分子的更高阶物种的平衡和非平衡构型,每个 F、Cl、Br 和 I 阴离子分别达到 54 个,并且我们提出了一个验证协议来交叉检查方法和方法。通过这种方式,我们旨在提高未来分子计算机模拟在确定不同离子在水环境中的持续冲突分布以及从纳米级簇到宏观凝聚相的转变的预测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验