Suppr超能文献

分子剪裁方法:从头处理大团簇的途径。

Molecular tailoring approach: a route for ab initio treatment of large clusters.

机构信息

Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.

出版信息

Acc Chem Res. 2014 Sep 16;47(9):2739-47. doi: 10.1021/ar500079b. Epub 2014 May 5.

Abstract

Conspectus Chemistry on the scale of molecular clusters may be dramatically different from that in the macroscopic bulk. Greater understanding of chemistry in this size regime could greatly influence fields such as materials science and atmospheric and environmental chemistry. Recent advances in experimental techniques and computational resources have led to accurate investigations of the energies and spectral properties of weakly bonded molecular clusters. These have enabled researchers to learn how the physicochemical properties evolve from individual molecules to bulk materials and to understand the growth patterns of clusters. Experimental techniques such as infrared, microwave, and photoelectron spectroscopy are the most popular and powerful tools for probing molecular clusters. In general, these experimental techniques do not directly reveal the atomistic details of the clusters but provide data from which the structural details need to be unearthed. Furthermore, the resolution of the spectral properties of energetically close cluster conformers can be prohibitively difficult. Thus, these investigations of molecular aggregates require a combination of experiments and theory. On the theoretical front, researchers have been actively engaged in quantum chemical ab initio calculations as well as simulation-based studies for the last few decades. To obtain reliable results, there is a need to use correlated methods such as Møller-Plesset second order method, coupled cluster theory, or dispersion corrected density functional theory. However, due to nonlinear scaling of these methods, optimizing the geometry of large clusters still remains a formidable quantum chemistry challenge. Fragment-based methods, such as divide-and-conquer, molecular tailoring approach (MTA), fragment molecular orbitals, and generalized energy-based fragmentation approach, provide alternatives for overcoming the scaling problem for spatially extended molecular systems. Within MTA, a large system is broken down into two or more subsystems that can be readily treated computationally. Finally, the properties of the large system are obtained by patching the corresponding properties of all the subsystems. Due to these approximations, the resulting MTA-based energies carry some error in comparison with calculations based on the full system. An approach for correcting these errors has been attempted by grafting the error at a lower basis set onto a higher basis set. Furthermore, investigating the growth patterns and nucleation processes in clusters is necessary for understanding the structural transitions and the phenomena of magic numbers in cluster chemistry. Therefore, systematic building-up or the introduction of stochastics for generating molecular assemblies is the most crucial step for studying large clusters. In this Account, we discuss the working principle of MTA for probing molecular clusters at ab initio level followed by a brief summary of an automated and electrostatics-guided algorithm for building molecular assemblies. The molecular aggregates presented here as test cases are generated based on either an electrostatic criterion or the basin hopping method. At MP2 level computation, the errors in MTA-based grafted energies are typically reduced to a submillihartree level, reflecting the potential of finding accurate energies of molecular clusters much more quickly. In summary, MTA provides a platform for effectively studying large molecular clusters at ab initio level of theory using minimal computer hardware.

摘要

分子簇尺度上的约化论化学可能与宏观大块中的化学有很大的不同。对这一尺寸范围内化学的进一步了解可能会极大地影响材料科学、大气和环境化学等领域。最近实验技术和计算资源的进步使得对弱键合分子簇的能量和光谱性质进行精确研究成为可能。这些研究使研究人员能够了解物理化学性质如何从单个分子演变为块状材料,并理解簇的生长模式。红外、微波和光电子光谱等实验技术是探测分子簇最流行和最强大的工具。一般来说,这些实验技术并不能直接揭示簇的原子细节,但提供了需要挖掘结构细节的数据。此外,能量相近的簇构象的光谱性质的分辨率可能非常困难。因此,这些对分子聚集体的研究需要实验和理论的结合。在理论方面,研究人员在过去几十年中一直积极从事量子化学从头计算以及基于模拟的研究。为了获得可靠的结果,需要使用相关方法,如 Møller-Plesset 二级方法、耦合簇理论或色散校正密度泛函理论。然而,由于这些方法的非线性标度,优化大簇的几何形状仍然是一个艰巨的量子化学挑战。基于片段的方法,如分而治之、分子剪裁方法(MTA)、片段分子轨道和基于广义能量的片段化方法,为克服空间扩展分子系统的标度问题提供了替代方法。在 MTA 中,一个大系统被分解成两个或更多可以方便地进行计算处理的子系统。最后,通过拼接所有子系统的相应性质来获得大系统的性质。由于这些近似,与基于完整系统的计算相比,基于 MTA 的能量会产生一些误差。已经尝试通过将较低基组的误差嫁接在较高基组上来纠正这些误差。此外,研究簇中的生长模式和成核过程对于理解结构转变和簇化学中的魔术数字现象是必要的。因此,系统地构建或引入随机性来生成分子组装是研究大簇的最关键步骤。在本报告中,我们讨论了 MTA 在从头算水平上探测分子簇的工作原理,然后简要总结了一种自动静电引导的构建分子组装的算法。这里呈现的分子聚集体是基于静电准则或盆地跳跃方法生成的。在 MP2 水平计算中,基于 MTA 的嫁接能量的误差通常降低到亚毫赫兹水平,这反映了更快地找到分子簇准确能量的潜力。总之,MTA 为在最小的计算机硬件上使用从头计算理论有效地研究大分子簇提供了一个平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验