Tessaro Leticia, Aquino Adriano, de Almeida Rodrigues Paloma, Joshi Nirav, Ferrari Rafaela Gomes, Conte-Junior Carlos Adam
Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil.
Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil.
Nanomaterials (Basel). 2022 Feb 28;12(5):821. doi: 10.3390/nano12050821.
bacteria is a foodborne pathogen found mainly in food products causing severe symptoms in the individual, such as diarrhea, fever, and abdominal cramps after consuming the infected food, which can be fatal in some severe cases. Rapid and selective methods to detect bacteria can prevent outbreaks when ingesting contaminated food. Nanobiosensors are a highly sensitive, simple, faster, and lower cost method for the rapid detection of , an alternative to conventional enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques. This study systematically searched and analyzed literature data related to nucleic acid-based nanobiosensors (NABs) with nanomaterials to detect in food, retrieved from three databases, published between 2010 and 2021. We extracted data and critically analyzed the effect of nanomaterial functionalized with aptamer or DNA at the limit of detection (LOD). Among the nanomaterials, gold nanoparticles (AuNPs) were the most used nanomaterial in studies due to their unique optical properties of the metal, followed by magnetic nanoparticles (MNPs) of FeO, copper nanoparticles (CuNPs), and also hybrid nanomaterials multiwalled carbon nanotubes (c-MWCNT/AuNP), QD/UCNP-MB (quantum dotes upconverting nanoparticle of magnetic beads), and cadmium telluride quantum dots (CdTe QDs@MNPs) showed excellent LOD values. The transducers used for detection also varied from electrochemical, fluorescent, surface-enhanced Raman spectroscopy (SERS), RAMAN spectroscopy, and mainly colorimetric due to the possibility of visualizing the detection result with the naked eye. Furthermore, we show the magnetic separation system capable of detecting the target amplification of the genetic material. Finally, we present perspectives, future research, and opportunities to use point-of-care (POC) diagnostic devices as a faster and lower cost approach for detecting in food as they prove to be viable for resource-constrained environments such as field-based or economically limited conditions.
[细菌名称]是一种食源性病原体,主要存在于食品中,会使个体出现严重症状,如食用受污染食品后出现腹泻、发烧和腹部绞痛,在某些严重情况下可能致命。快速且具有选择性的检测[细菌名称]的方法可以预防摄入受污染食品时的疫情爆发。纳米生物传感器是一种用于快速检测[细菌名称]的高灵敏度、简单、快速且低成本的方法,是传统酶联免疫吸附测定(ELISA)和聚合酶链反应(PCR)技术的替代方法。本研究系统地检索和分析了2010年至2021年间从三个数据库中检索到的与基于核酸的纳米生物传感器(NABs)及纳米材料用于检测食品中的[细菌名称]相关的文献数据。我们提取了数据并批判性地分析了用适配体或DNA功能化的纳米材料在检测限(LOD)方面的效果。在纳米材料中,金纳米颗粒(AuNPs)由于其独特的金属光学性质,是研究中使用最多的纳米材料,其次是FeO磁性纳米颗粒(MNPs)、铜纳米颗粒(CuNPs),还有杂化纳米材料多壁碳纳米管(c-MWCNT/AuNP)、QD/UCNP-MB(磁珠量子点上转换纳米颗粒)和碲化镉量子点(CdTe QDs@MNPs)显示出优异的LOD值。用于检测的换能器也各不相同,包括电化学、荧光、表面增强拉曼光谱(SERS)、拉曼光谱,主要是比色法,因为可以用肉眼观察检测结果。此外,我们展示了能够检测遗传物质目标扩增的磁分离系统。最后,我们提出了将即时检测(POC)诊断设备作为一种更快且低成本的方法用于检测食品中[细菌名称]的前景、未来研究和机会,因为它们在诸如现场或经济条件有限等资源受限环境中被证明是可行的。