通过等位基因频率对复杂性状遗传力的基因水平贡献进行分区,可识别与疾病相关的基因。
Partitioning gene-level contributions to complex-trait heritability by allele frequency identifies disease-relevant genes.
机构信息
Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Computational Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
出版信息
Am J Hum Genet. 2022 Apr 7;109(4):692-709. doi: 10.1016/j.ajhg.2022.02.012. Epub 2022 Mar 9.
Recent works have shown that SNP heritability-which is dominated by low-effect common variants-may not be the most relevant quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance explained by a given assignment of SNPs to a single gene ("gene-level heritability"). We partition gene-level heritability by minor allele frequency (MAF) to find genes whose gene-level heritability is explained exclusively by "low-frequency/rare" variants (0.5% ≤ MAF < 1%). Applying our method to ∼16K protein-coding genes and 25 quantitative traits in the UK Biobank (N = 290K "White British"), we find that, on average across traits, ∼2.5% of nonzero-heritability genes have a rare-variant component and only ∼0.8% (327 gene-trait pairs) have heritability exclusively from rare variants. Of these 327 gene-trait pairs, 114 (35%) were not detected by existing gene-level association testing methods. The additional genes we identify are significantly enriched for known disease genes, and we find several examples of genes that have been previously implicated in phenotypically related Mendelian disorders. Notably, the rare-variant component of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumulative distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common variants to overall gene-level polygenicity. While nonzero gene-level heritability does not imply causality, if interpreted in the correct context, gene-level heritability can reveal useful insights into complex-trait genetic architecture.
最近的研究表明,SNP 遗传力(主要由低效应常见变异体决定)可能不是定位高效应/关键疾病基因的最相关数量。在这里,我们介绍了一种估计给定 SNP 分配给单个基因的表型方差比例的方法(“基因水平遗传力”)。我们通过次要等位基因频率(MAF)对基因水平遗传力进行分区,以找到仅由“低频/罕见”变异体(0.5%≤MAF<1%)解释的基因水平遗传力的基因。将我们的方法应用于 UK Biobank 中的约 16K 个蛋白质编码基因和 25 个数量性状(N=290K“白种英国人”),我们发现,平均而言,在所有性状中,约 2.5%的非零遗传力基因具有罕见变异体成分,仅有约 0.8%(327 个基因-性状对)的遗传力完全来自罕见变异体。在这 327 个基因-性状对中,有 114 对(35%)没有被现有的基因水平关联测试方法检测到。我们鉴定的额外基因显著富集了已知的疾病基因,我们发现了一些先前涉及表型相关孟德尔疾病的基因的例子。值得注意的是,基因水平遗传力的罕见变异体成分表现出与常见变异体基因水平遗传力不同的趋势。例如,虽然总基因水平遗传力随基因长度增加而增加,但罕见变异体成分在较短基因中显著更大;基因水平遗传力的累积分布也因性状而异,揭示了罕见/常见变异体对整体基因水平多态性的相对贡献的差异。虽然非零基因水平遗传力并不意味着因果关系,但如果在正确的背景下解释,基因水平遗传力可以为复杂性状的遗传结构提供有用的见解。
相似文献
Nat Genet. 2017-7
Am J Hum Genet. 2016-7-7
引用本文的文献
Heredity (Edinb). 2022-1
本文引用的文献
J R Stat Soc Series B Stat Methodol. 2020-12
Heredity (Edinb). 2022-1
Nat Genet. 2021-2