Yu Yixuan, Wang Haonan, Li Hao, Tao Ping, Sun Tianjun
Marine Engineering College, Dalian Maritime University, Dalian, 116026, China.
Environmental Science and Engineering College, Dalian Maritime University, Dalian, 116026, China.
Chemosphere. 2022 Jul;298:134187. doi: 10.1016/j.chemosphere.2022.134187. Epub 2022 Mar 7.
Developing an efficient approach to decompose ground-level O in humidity is crucial for preventing O pollution in practical application scenes. In this study, MnO, CuO, and Cu/MnO were synthesized to investigate the influence of HO on the variation of active sites during O decomposition. The structural characterizations of the as-synthetic catalysts were measured by N2 physisorption, XRD, SEM, O-TPD, H-TPR, TG, and FT-IR analyses. In dry conditions, the elimination rate of O followed the sequence of MnO > Cu/MnO > CuO. The introduction of Cu to MnO enhanced the surface area and pore volume of Cu/MnO, accordingly diminishing the amounts of surface defects and the participation of sub-surface lattice oxygen for catalytic cycle, indicating that surface defects and oxygen vacancies (V) determined the catalytic activity for O decomposition. In humid conditions, the elimination rate of O changed to the sequence of Cu/MnO > MnO > CuO, with a variation rate compared to dry conditions of -62.9% for MnO, 14.2% for CuO, and 27.7% for Cu/MnO. The decrease of participant sub-surface lattice oxygen and the accumulation of intermediates in humidity diminished the decomposition of O on MnO, while the active species such as superoxide radicals generating from the reaction of HO and Cu/MnO facilitated the participation of V and the desorption of O from the occupied active sites, accelerating the catalytic cycle on Cu/MnO. This work developed a deeper understanding of the influence of HO on catalytic activity, promoting the performance of MnO-based catalysts for practical O decomposition.
开发一种在湿度条件下有效分解地面臭氧的方法对于在实际应用场景中防止臭氧污染至关重要。在本研究中,合成了MnO、CuO和Cu/MnO,以研究湿度对臭氧分解过程中活性位点变化的影响。通过N2物理吸附、XRD、SEM、O-TPD、H-TPR、TG和FT-IR分析对合成后的催化剂进行了结构表征。在干燥条件下,臭氧的消除率顺序为MnO>Cu/MnO>CuO。将Cu引入MnO中增加了Cu/MnO的表面积和孔体积,相应地减少了表面缺陷的数量以及次表面晶格氧参与催化循环的程度,这表明表面缺陷和氧空位决定了臭氧分解的催化活性。在潮湿条件下,臭氧的消除率顺序变为Cu/MnO>MnO>CuO,与干燥条件相比,MnO的变化率为-62.9%,CuO为14.2%,Cu/MnO为27.7%。湿度条件下次表面晶格氧参与度的降低以及中间体的积累减少了MnO上臭氧的分解,而湿度条件下HO与Cu/MnO反应产生的超氧自由基等活性物种促进了氧空位的参与以及臭氧从占据的活性位点上的解吸,加速了Cu/MnO上的催化循环。这项工作加深了对湿度对催化活性影响的理解,提高了基于MnO的催化剂在实际臭氧分解中的性能。