Suppr超能文献

联合GFAP、NFL、Tau和UCH-L1检测组可提高新生儿脑病预后的预测能力。

Combined GFAP, NFL, Tau, and UCH-L1 panel increases prediction of outcomes in neonatal encephalopathy.

作者信息

Yang Zhihui, Xu Haiyan, Sura Livia, Arja Rawad Daniel, Patterson Robert Logan, Rossignol Candace, Albayram Mehmet, Rajderkar Dhanashree, Ghosh Suman, Wang Kevin, Weiss Michael D

机构信息

Department of Emergency Medicine, University of Florida, 1149 Newell Drive, L3-166, Gainesville, FL, 32611, USA.

Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA.

出版信息

Pediatr Res. 2023 Apr;93(5):1199-1207. doi: 10.1038/s41390-022-01994-0. Epub 2022 Mar 10.

Abstract

BACKGROUND

Neuroprognostication in neonates with neonatal encephalopathy (NE) may be enhanced by early serial measurement of a panel of four brain-specific biomarkers.

METHODS

To evaluate serum biomarkers, 40 NE samples and 37 healthy neonates from a biorepository were analyzed. Blood samples were collected at 0-6, 12, 24, 48, and 96 h of life. MRI provided a short-term measure of injury. Long-term outcomes included death or a Bayley III score at 17-24 months of age.

RESULTS

Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase-L1 (UCH-L1), and Tau peaked at 0-6 h of life, while neurofilament light chain (NFL) peaked at 96 h of life. These four marker concentrations at 96 h of life differentiated moderate/severe from none/mild brain injury by MRI, while GFAP and Tau showed early discrimination. For long-term outcomes, GFAP, NFL, Tau, and UCH-L1 could differentiate a poor outcome vs good outcome as early as 0-6 h of life, depending on the Bayley domain, and a combination of the four markers enhanced the sensitivity and specificity. Machine learning trajectory analyses identified upward trajectory patients with a high concordance to poor outcomes.

CONCLUSION

GFAP, NFL, Tau, and UCH-L1 may be of neuroprognostic significance after NE.

IMPACT

Serial measurements of GFAP, NFL, Tau, and UCH-L1 show promise in aiding the bedside clinician in making treatment decisions in neonatal encephalopathy. The panel of four neuroproteins increased the ability to predict neurodevelopmental outcomes. The study utilized a trajectory analysis that enabled predictive modeling. A panel approach provides the bedside clinician with objective data to individualize care. This study provides the foundation to develop a point of care device in the future.

摘要

背景

通过早期连续测量一组四种脑特异性生物标志物,可能会增强对患有新生儿脑病(NE)的新生儿的神经预后评估。

方法

为了评估血清生物标志物,对生物样本库中的40份NE样本和37名健康新生儿进行了分析。在出生后0 - 6小时、12小时、24小时、48小时和96小时采集血样。MRI提供了损伤的短期测量指标。长期结局包括死亡或17 - 24个月龄时的贝利婴幼儿发展量表第三版(Bayley III)评分。

结果

胶质纤维酸性蛋白(GFAP)、泛素C末端水解酶-L1(UCH-L1)和Tau蛋白在出生后0 - 6小时达到峰值,而神经丝轻链(NFL)在出生后96小时达到峰值。出生后96小时时这四种标志物的浓度通过MRI可区分中度/重度与无/轻度脑损伤,而GFAP和Tau蛋白显示出早期区分能力。对于长期结局,GFAP、NFL、Tau蛋白和UCH-L1早在出生后0 - 6小时就能根据贝利婴幼儿发展量表领域区分不良结局与良好结局,并且这四种标志物的组合提高了敏感性和特异性。机器学习轨迹分析确定了与不良结局高度一致的上升轨迹患者。

结论

GFAP、NFL、Tau蛋白和UCH-L1在新生儿脑病后可能具有神经预后意义。

影响

连续测量GFAP、NFL、Tau蛋白和UCH-L1有望帮助床边临床医生在新生儿脑病中做出治疗决策。这四种神经蛋白组合提高了预测神经发育结局的能力。该研究采用了轨迹分析,能够进行预测建模。组合方法为床边临床医生提供了客观数据以实现个性化护理。本研究为未来开发即时检测设备奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验