Suppr超能文献

BridgeDPI:一种用于预测药物-蛋白质相互作用的新型图神经网络。

BridgeDPI: a novel Graph Neural Network for predicting drug-protein interactions.

作者信息

Wu Yifan, Gao Min, Zeng Min, Zhang Jie, Li Min

机构信息

SenseTime Research, Shanghai 200233, China.

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

出版信息

Bioinformatics. 2022 Apr 28;38(9):2571-2578. doi: 10.1093/bioinformatics/btac155.

Abstract

MOTIVATION

Exploring drug-protein interactions (DPIs) provides a rapid and precise approach to assist in laboratory experiments for discovering new drugs. Network-based methods usually utilize a drug-protein association network and predict DPIs by the information of its associated proteins or drugs, called 'guilt-by-association' principle. However, the 'guilt-by-association' principle is not always true because sometimes similar proteins cannot interact with similar drugs. Recently, learning-based methods learn molecule properties underlying DPIs by utilizing existing databases of characterized interactions but neglect the network-level information.

RESULTS

We propose a novel method, namely BridgeDPI. We devise a class of virtual nodes to bridge the gap between drugs and proteins and construct a learnable drug-protein association network. The network is optimized based on the supervised signals from the downstream task-the DPI prediction. Through information passing on this drug-protein association network, a Graph Neural Network can capture the network-level information among diverse drugs and proteins. By combining the network-level information and the learning-based method, BridgeDPI achieves significant improvement in three real-world DPI datasets. Moreover, the case study further verifies the effectiveness and reliability of BridgeDPI.

AVAILABILITY AND IMPLEMENTATION

The source code of BridgeDPI can be accessed at https://github.com/SenseTime-Knowledge-Mining/BridgeDPI. The source data used in this study is available on the https://github.com/IBM/InterpretableDTIP (for the BindingDB dataset), https://github.com/masashitsubaki/CPI_prediction (for the C.ELEGANS and HUMAN) datasets, http://dude.docking.org/ (for the DUD-E dataset), repectively.

摘要

动机

探索药物 - 蛋白质相互作用(DPI)为协助实验室实验发现新药提供了一种快速且精确的方法。基于网络的方法通常利用药物 - 蛋白质关联网络,并通过其相关蛋白质或药物的信息来预测DPI,这被称为“关联有罪”原则。然而,“关联有罪”原则并非总是成立,因为有时相似的蛋白质无法与相似的药物相互作用。最近,基于学习的方法通过利用已有的特征相互作用数据库来学习DPI背后的分子特性,但忽略了网络层面的信息。

结果

我们提出了一种新颖的方法,即BridgeDPI。我们设计了一类虚拟节点来弥合药物和蛋白质之间的差距,并构建一个可学习的药物 - 蛋白质关联网络。该网络基于来自下游任务——DPI预测的监督信号进行优化。通过在这个药物 - 蛋白质关联网络上传递信息,图神经网络可以捕捉不同药物和蛋白质之间的网络层面信息。通过结合网络层面信息和基于学习的方法,BridgeDPI在三个真实世界的DPI数据集上取得了显著改进。此外,案例研究进一步验证了BridgeDPI的有效性和可靠性。

可用性与实现

BridgeDPI的源代码可在https://github.com/SenseTime-Knowledge-Mining/BridgeDPI获取。本研究中使用的源数据分别可在https://github.com/IBM/InterpretableDTIP(用于BindingDB数据集)、https://github.com/masashitsubaki/CPI_prediction(用于秀丽隐杆线虫和人类数据集)、http://dude.docking.org/(用于DUD - E数据集)获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验