Suppr超能文献

基于图和序列神经网络端到端学习的化合物-蛋白质相互作用预测。

Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences.

机构信息

National Institute of Advanced Industrial Science and Technology, Artificial Intelligence Research Center, Tokyo, Japan.

AIST- Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo, Japan.

出版信息

Bioinformatics. 2019 Jan 15;35(2):309-318. doi: 10.1093/bioinformatics/bty535.

Abstract

MOTIVATION

In bioinformatics, machine learning-based methods that predict the compound-protein interactions (CPIs) play an important role in the virtual screening for drug discovery. Recently, end-to-end representation learning for discrete symbolic data (e.g. words in natural language processing) using deep neural networks has demonstrated excellent performance on various difficult problems. For the CPI problem, data are provided as discrete symbolic data, i.e. compounds are represented as graphs where the vertices are atoms, the edges are chemical bonds, and proteins are sequences in which the characters are amino acids. In this study, we investigate the use of end-to-end representation learning for compounds and proteins, integrate the representations, and develop a new CPI prediction approach by combining a graph neural network (GNN) for compounds and a convolutional neural network (CNN) for proteins.

RESULTS

Our experiments using three CPI datasets demonstrated that the proposed end-to-end approach achieves competitive or higher performance as compared to various existing CPI prediction methods. In addition, the proposed approach significantly outperformed existing methods on an unbalanced dataset. This suggests that data-driven representations of compounds and proteins obtained by end-to-end GNNs and CNNs are more robust than traditional chemical and biological features obtained from databases. Although analyzing deep learning models is difficult due to their black-box nature, we address this issue using a neural attention mechanism, which allows us to consider which subsequences in a protein are more important for a drug compound when predicting its interaction. The neural attention mechanism also provides effective visualization, which makes it easier to analyze a model even when modeling is performed using real-valued representations instead of discrete features.

AVAILABILITY AND IMPLEMENTATION

https://github.com/masashitsubaki.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在生物信息学中,基于机器学习的方法可以预测化合物-蛋白质相互作用(CPIs),在药物发现的虚拟筛选中发挥着重要作用。最近,使用深度神经网络对离散符号数据(例如自然语言处理中的单词)进行端到端表示学习,在各种困难问题上表现出了优异的性能。对于 CPI 问题,数据以离散符号数据的形式提供,即化合物表示为图,其中顶点是原子,边是化学键,蛋白质是序列,其中字符是氨基酸。在这项研究中,我们研究了端到端表示学习在化合物和蛋白质中的应用,整合了表示,并通过结合用于化合物的图神经网络(GNN)和用于蛋白质的卷积神经网络(CNN),开发了一种新的 CPI 预测方法。

结果

我们使用三个 CPI 数据集进行的实验表明,与各种现有的 CPI 预测方法相比,所提出的端到端方法具有竞争力或更高的性能。此外,在所使用的不平衡数据集上,所提出的方法明显优于现有的方法。这表明,通过端到端 GNN 和 CNN 获得的化合物和蛋白质的基于数据的表示比从数据库中获得的传统化学和生物学特征更健壮。尽管由于深度学习模型的黑盒性质,分析它们很困难,但我们使用神经注意力机制解决了这个问题,该机制允许我们考虑在预测药物化合物的相互作用时,蛋白质中的哪些子序列对其更重要。神经注意力机制还提供了有效的可视化,即使使用实值表示而不是离散特征进行建模,也使得分析模型变得更加容易。

可用性和实现

https://github.com/masashitsubaki。

补充信息

补充数据可在 Bioinformatics 在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验