Zeng Xin, Su Guang-Peng, Du Wen-Feng, Jiang Bei, Li Yi, Yang Zi-Zhong
College of Mathematics and Computer Science, Dali University, Dali, 671003, China.
Yunnan Key Laboratory of Screening and Research On Anti-Pathogenic Plant Resources From Western Yunnan, Dali University, Dali, 671000, China.
BMC Biol. 2025 Jul 1;23(1):168. doi: 10.1186/s12915-025-02256-1.
Accurately identifying targets not only guides treatments for diseases with unclear pathogenic mechanisms, but also reduces pharmaceutical costs and accelerates drug development timelines. However, the primary challenge in targets identification currently lies in the low accuracy of existing computational methods.
We propose MM-IDTarget, a novel deep learning framework that employ a multimodal fusion strategy based on the intra and inter cross-attention mechanisms. MM-IDTarget integrates some cutting-edge deep learning techniques such as graph transformer, multi-scale convolutional neural networks (MCNN), and residual edge-weighted graph convolutional network (EW-GCN) to extract sequence and structure modal features of drugs and targets. This framework enhances the complementary of multimodal features by employing the intra and inter cross-attention mechanisms, facilitating effective fusion of multimodal features within drug and target and between drug and target. Furthermore, MM-IDTarget incorporates the physicochemical features of drug and target, utilizing fully connected networks to predict drug-target interactions (DTI).
Experimental results show that despite our benchmark dataset being one-third or the same size of those used by current state-of-the-art methods, MM-IDTarget achieves the performance on par with or superior to these methods across most Top-K evaluation metrics based on the same test set for targets identification. Moreover, MM-IDTarget exhibits the strong application capability on two generalization datasets and one dataset constructed from approved drugs, establishing it as a robust tool for targets identification.
准确识别靶点不仅可为致病机制不明的疾病治疗提供指导,还能降低药物成本并加快药物研发进程。然而,目前靶点识别的主要挑战在于现有计算方法的准确性较低。
我们提出了MM-IDTarget,这是一种新颖的深度学习框架,采用基于内部和交叉注意力机制的多模态融合策略。MM-IDTarget整合了一些前沿的深度学习技术,如图形变换器、多尺度卷积神经网络(MCNN)和残差边缘加权图卷积网络(EW-GCN),以提取药物和靶点的序列和结构模态特征。该框架通过采用内部和交叉注意力机制增强了多模态特征的互补性,促进了药物内部和靶点内部以及药物与靶点之间多模态特征的有效融合。此外,MM-IDTarget纳入了药物和靶点的物理化学特征,利用全连接网络预测药物-靶点相互作用(DTI)。
实验结果表明,尽管我们的基准数据集只有当前最先进方法所用数据集的三分之一或相同大小,但在基于相同测试集进行靶点识别的大多数Top-K评估指标上,MM-IDTarget的性能与这些方法相当或更优。此外,MM-IDTarget在两个泛化数据集和一个由获批药物构建的数据集上展现出强大的应用能力,确立了其作为靶点识别的强大工具地位。