Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.
ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia.
J Exp Bot. 2022 May 23;73(10):3085-3108. doi: 10.1093/jxb/erac081.
Improvement of photosynthetic traits in crops to increase yield potential and crop resilience has recently become a major breeding target. Synthetic biology and genetic technologies offer unparalleled opportunities to create new genetics for photosynthetic traits driven by existing fundamental knowledge. However, large 'gene bank' collections of germplasm comprising historical collections of crop species and their relatives offer a wealth of opportunities to find novel allelic variation in the key steps of photosynthesis, to identify new mechanisms and to accelerate genetic progress in crop breeding programmes. Here we explore the available genetic resources in food and fibre crops, strategies to selectively target allelic variation in genes underpinning key photosynthetic processes, and deployment of this variation via gene editing in modern elite material.
提高作物的光合特性以提高产量潜力和作物的适应力,最近已成为主要的培育目标。合成生物学和基因技术为创造新的遗传学提供了前所未有的机会,这些新的遗传学可以驱动光合作用的特性,这些特性是基于现有的基础知识。然而,大型的“基因库”收集了包括作物物种及其亲缘物种的历史收集品在内的种质资源,为发现光合作用关键步骤中的新等位基因变异、确定新机制以及加速作物育种计划中的遗传进展提供了丰富的机会。在这里,我们探讨了粮食和纤维作物中可用的遗传资源、有针对性地选择关键光合作用过程中基因的等位基因变异的策略,以及通过现代优良材料中的基因编辑来利用这种变异。