Kang Han Sol, Park Chanho, Eoh Hongkyu, Lee Chang Eun, Ryu Du Yeol, Kang Youngjong, Feng Xuenyan, Huh June, Thomas Edwin L, Park Cheolmin
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.
Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA.
Sci Adv. 2022 Mar 11;8(10):eabm5120. doi: 10.1126/sciadv.abm5120.
Stimuli-interactive structural color (SC) of a block copolymer (BCP) photonic crystal (PC) uses reversible alteration of the PC using external fluids and applied forces. The origin of the diffusional pathways of a stimulating fluid into a BCP PC has not been examined. Here, we directly visualize the vertically oriented screw dislocations in a one-dimensional lamellar BCP PC that facilitate the rapid response of visible SC. To reveal the diffusional pathway of the solvent via the dislocations, BCP lamellae are swollen with an interpenetrated hydrogel network, allowing fixation of the swollen state and subsequent microscopic examination. The visualized defects are low-energy helicoidal screw dislocations having unique, nonsingular cores. Location and areal density of these dislocations are determined by periodic concentric topographic nanopatterns of the upper surface-reconstructed layer. The nonsingular nature of the interlayer connectivity in the core region demonstrates the beneficial nature of these defects on sensing dynamics.
嵌段共聚物(BCP)光子晶体(PC)的刺激交互式结构颜色(SC)利用外部流体和施加的力对PC进行可逆改变。刺激流体进入BCP PC的扩散途径的起源尚未得到研究。在这里,我们直接观察到一维层状BCP PC中垂直取向的螺旋位错,这些位错促进了可见SC的快速响应。为了揭示溶剂通过位错的扩散途径,BCP薄片被互穿水凝胶网络溶胀,从而固定溶胀状态并进行后续显微镜检查。可视化的缺陷是具有独特、非奇异核心的低能量螺旋形螺旋位错。这些位错的位置和面积密度由上表面重建层的周期性同心地形纳米图案确定。核心区域中层间连接的非奇异性质证明了这些缺陷对传感动力学的有益性质。